Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404769, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783562

RESUMO

Elastomeric solid polymer electrolytes (SPEs) are highly promising to address the solid-solid-interface issues of solid-state lithium metal batteries (LMBs), but compromises have to be made to balance the intrinsic trade-offs among their conductive, resilient and recyclable properties. Here, we propose a dual-bond crosslinking strategy for SPEs to realize simultaneously high ionic conductivity, elastic resilience and recyclability. An elastomeric SPE is therefore designed with hemiaminal dynamic covalent networks and Li+-dissociation co-polymer chains, where the -C-N- bond maintains the load-bearing covalent network under stress but is chemically reversible through a non-spontaneous reaction, the weaker intramolecular hydrogen bond is mechanically reversible, and the soft chains endow the rapid ion conduction. With this delicate structure, the optimized SPE elastomer achieves high elastic resilience without loading-unloading hysteresis, outstanding ionic conductivity of 0.2 mS cm-1 (25 °C) and chemical recyclability. Then, exceptional room-temperature performances are obtained for repeated Li plating/stripping tests, and stable cycling of LMBs with either LiFePO4 or 4.3 V-class LiFe0.2Mn0.8PO4 cathode. Furthermore, the recycled and reprocessed SPEs can be circularly reused in LMBs without significant performance degradation. Our findings provide an inspiring design principle for SPEs to address the solid-solid-interface and sustainability challenges of solid-state LMBs.

2.
Polymers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36433035

RESUMO

The highly efficient, pollution-free and degradable biomass-based adsorbents used for the purification of wastewater are currently being highlighted in the research. Bamboo is an excellent raw material for pulp production due to its characteristics of fast growth, wide distribution and high cellulose content. In this study, a tannin/chitosan/bamboo pulp aerogel (TCPA), an environmentally friendly, renewable and low-density adsorbent, was synthesized using a simple freeze-drying method and analyzed by FTIR, XPS, SEM, TEM, TGA and surface area and porosity methods. TCPA has a large specific surface area (137.33 m2/g) and 3D porous structure, and its surface has multiple functional groups including amino, carboxyl and hydroxyl groups, which lead to a simultaneous absorption effect with Me2+ (Cu2+ and Cd2+). The maximum adsorption capacity for Cu2+ and Cd2+ of the TCPA was 72.73 mg/g and 52.52 mg/g, respectively. The adsorption processes of Me2+ by TCPA follow the pseudo-second-order model and Langmuir isotherm mode, and the adsorption processes are spontaneous and endothermic. The study provides a promising candidate for the treatment of wastewater containing heavy metal mixtures.

3.
RSC Adv ; 9(11): 5978-5986, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35517281

RESUMO

The concept of a solid catalyst coated with a thin ionic liquid layer (SCILL) was applied to the stereoselective hydrogenation of α-pinene. Nickel, a non-noble metal, was supported on a discarded fluid catalytic cracking catalyst (DF3C) and then modified with different loadings of the ionic liquid 1-ethanol-3-methylimidazolium tetrafluoroborate ([C2OHmim][BF4]). The resulting catalysts showed a range of conversions and selectivities for the hydrogenation of α-pinene. The SCILL catalysts afforded cis-pinane with high selectivity and their activity depended on the ionic liquid loading. For an ionic liquid loading of 10 wt%, although the catalytic activity was suppressed, the selectivity and conversion could reach above 98% and 99%, respectively. In addition, the catalyst remained stable after 13 runs and the activity was almost unchanged with the conversion maintained at approximately 99%. Thus, the ionic liquid layer not only improved the selectivity for cis-pinane but also protected the active site of the catalyst and prolonged the service lifetime of the catalyst. The SCILL catalytic system provides an example of an ionic liquid catalytic system which eliminates organic solvents from the catalytic process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...