Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1106881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875092

RESUMO

The complex mechanism of immune-system damage in HIV infection is incompletely understood. HIV-infected "rapid progressors" (RPs) have severe damage to the immune system early in HIV infection, which provides a "magnified" opportunity to study the interaction between HIV and the immune system. In this study, forty-four early HIV-infected patients (documented HIV acquisition within the previous 6 months) were enrolled. By study the plasma of 23 RPs (CD4+ T-cell count < 350 cells/µl within 1 year of infection) and 21 "normal progressors" (NPs; CD4+ T-cell count > 500 cells/µl after 1 year of infection), eleven lipid metabolites were identified that could distinguish most of the RPs from NPs using an unsupervised clustering method. Among them, the long chain fatty acid eicosenoate significantly inhibited the proliferation and secretion of cytokines and induced TIM-3 expression in CD4+ and CD8+ T cells. Eicosenoate also increased levels of reactive oxygen species (ROS) and decreased oxygen consumption rate (OCR) and mitochondrial mass in T cells, indicating impairment in mitochondrial function. In addition, we found that eicosenoate induced p53 expression in T cells, and inhibition of p53 effectively decreased mitochondrial ROS in T cells. More importantly, treatment of T cells with the mitochondrial-targeting antioxidant mito-TEMPO restored eicosenoate-induced T-cell functional impairment. These data suggest that the lipid metabolite eicosenoate inhibits immune T-cell function by increasing mitochondrial ROS by inducing p53 transcription. Our results provide a new mechanism of metabolite regulation of effector T-cell function and provides a potential therapeutic target for restoring T-cell function during HIV infection.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Humanos , Espécies Reativas de Oxigênio , Proteína Supressora de Tumor p53 , Mitocôndrias , Ácidos Graxos
2.
Front Microbiol ; 13: 880873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875558

RESUMO

Background: Despite the benefits of antiretroviral therapy (ART) for people with HIV, T-cell dysfunction cannot be fully restored. Metabolic dysregulation is associated with dysfunction of HIV-1-specific T-cells. Exploration of the factors regulating metabolic fitness can help reverse T-cell dysfunction and provide new insights into the underlying mechanism. Methods: In this study, HIV-infected individuals and HIV-negative control individuals (NCs) were enrolled. T-cell factor (TCF)1 expression in cells was determined by quantitative reverse-transcriptase polymerase chain reaction and flow cytometry. Relevant microarray data from the GEO database were analyzed to explore the underlying mechanism. The effects of TCF1 on T-cell function and metabolic function were assessed in vitro. Results: TCF7 mRNA expression in peripheral blood mononuclear cells was downregulated in rapid progressors compared with long-term non-progressors individuals and NCs. TCF1 expression on CD4+ and CD8+ T-cells was downregulated in treatment-naïve HIV-infected individuals compared with NCs. Interleukin (IL)2 production and proliferative capacity were impaired in TCF1 knockdown T-cells. Moreover, glycolytic capacity and mitochondrial respiratory function were decreased in TCF1 knockdown T-cells, and depolarized mitochondria were increased in TCF1 knockdown T-cells. Conclusion: Downregulation of TCF1 in HIV infection impairs T-cell proliferative capacity by disrupting mitochondrial function. These findings highlight the metabolic regulation as a pivotal mechanism of TCF1 in the regulation of T-cell dysfunction.

3.
J Transl Med ; 17(1): 167, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118081

RESUMO

BACKGROUND: In human immunodeficiency virus (HIV) infection, 10-15% of individuals exhibit a rapid decline in CD4+ T cells and become rapid progressors (RPs). Overall, understanding the factors affecting rapid disease progression in early HIV infection (EHI) can aid in treatment initiation. Recent studies show that eIF3s, classic scaffold proteins during the translation initiation process, can directly promote or inhibit the translation of mRNA, therefore participating in the regulation of cell function. However, to our knowledge, it has not been addressed whether eIF3s are involved in the diverse prognosis of HIV infection. METHODS: Expression of eIF3s in primary cells from early or chronic HIV-infected patients was detected by real-time PCR. To investigate the potential mechanisms of eIF3d in the regulation of CD8+ T cell function, complete transcriptomes of eIF3d-inhibited Jurkat T cells were sequenced by RNA sequencing (RNA-Seq). Additionally, to examine the effect of eIF3d on CD8+ T cell function, eIF3d expression was inhibited alone or in combination with SOCS-7 knockdown by siRNA in isolated CD8+ T cells. CD8+ T cell proliferation, IFN-r secretion and apoptosis were detected by flow cytometry. Moreover, the effect of eIF3d on HIV replication was evaluated in Jurkat cells, peripheral blood mononuclear cells (PBMCs) and CD4+ T cells with eIF3d knockdown using a pNL4-3 pseudotyped virus. RESULTS: At approximately 100 days of infection, only eIF3d was markedly decreased in RPs compared with chronic progressors (CPs). Expression of eIF3d correlated significantly with disease progression in EHI. Based on in vitro analyses, reduced eIF3d expression led to decreased proliferation and IFN-γ secretion and increased apoptosis in CD8+ T cells. Inhibited expression of eIF3d caused enhanced expression of SOCS-7, and inhibiting SOCS-7 expression by siRNA rescued the attenuated CD8+ T cell function caused by eIF3d. Finally, when eIF3d was inhibited in Jurkat cells, PBMCs and CD4+ T cells, pNL4-3-VSV-G virus replication was enhanced. CONCLUSIONS: The current data highlight the importance of eIF3d in HIV infection by inhibiting CD8+ T cell function and promoting viral replication. Our study provides potential targets for improved immune intervention.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Progressão da Doença , Fator de Iniciação 3 em Eucariotos/metabolismo , Infecções por HIV/imunologia , Adulto , Apoptose , Proliferação de Células , Fator de Iniciação 3 em Eucariotos/genética , Feminino , Regulação da Expressão Gênica , Infecções por HIV/genética , Humanos , Interferon gama/metabolismo , Células Jurkat , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Replicação Viral
4.
Front Immunol ; 9: 3140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687333

RESUMO

Human immunodeficiency virus (HIV)-infected long-term non-progressors (LTNPs) are of particular importance because of their unique disease progression characteristics. Defined by the maintenance of normal CD4+T cells after more than 8 years of infection, these LTNPs are heterogeneous. Some LTNPs exhibit ongoing viral production, while others do not and are able to control viral production. The underlying basis for this heterogeneity has not been clearly elucidated. In this study, the miRNA expression profiles of LTNPs were assessed. The levels of microRNA-19b (miR-19b) were found to be significantly increased in peripheral blood mononuclear cells of LTNPs with lower rather than higher viral load. We made clear that miR-19b may regulate CD8+T cell functions in HIV infection, which has not been addressed before. Overexpression of miR-19b promoted CD8+T cell proliferation, as well as interferon-γ and granzyme B expression, while inhibiting CD8+T cells apoptosis induced by anti-CD3/CD28 stimulation. The target of miR-19b was found to be the "phosphatase and tensin homolog", which regulates CD8+T cells function during HIV infections. Furthermore, we found that miR-19b can directly inhibit viral production in in-vitro HIV infected T cells. These results highlight the importance of miR-19b to control viral levels, which facilitate an understanding of human immunodeficiency virus pathogenesis and provide potential targets for improved immune intervention.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Terapia Antirretroviral de Alta Atividade , Apoptose/genética , Apoptose/imunologia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Sobreviventes de Longo Prazo ao HIV , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Resposta Viral Sustentada , Carga Viral , Replicação Viral
5.
Front Immunol ; 8: 1122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955339

RESUMO

Persistent activation and inflammation impair immune response and trigger disease progression in HIV infection. Emerging evidence supports the supposition that excessive production of interferon-inducible protein 10 (IP-10), a critical inflammatory cytokine, leads to immune dysfunction and disease progression in HIV infection. In this study, we sought to elucidate the cause of the upregulated production of IP-10 in HIV infection and explore the underlying mechanisms. Bolstering miR-21 levels using mimics resulted in the obvious suppression of lipopolysaccharide (LPS)-induced IP-10 in monocyte leukemia cells THP-1 and vice versa. The analysis of the primary monocytes of HIV patients revealed significantly less miR-21 than in healthy controls; this was opposite to the tendency of IP-10 levels in plasma. The secretion of IP-10 due to LPS stimulation was not affected by miR-21 modulation in the differentiated THP-1 macrophages (THP-1-MA). We found a novel switch, IFN-stimulated gene 15 (ISG15), which triggers the expression of IP-10 and is significantly upregulated during the differentiation of THP-1 into THP-1-MA. The inhibition of ISG15 can restore the regulation of IP-10 by miR-21. In summary, IP-10 expression in monocytes is regulated by miR-21, whereas in macrophages, this fine-tuning is attenuated by the enhanced expression of ISG15. This study paves the way to a comprehensive understanding of the molecular regulatory mechanism of IP-10, a key point in immune intervention strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...