Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin J Integr Med ; 24(1): 47-55, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28741062

RESUMO

OBJECTIVE: To evaluate anti-melanoma effect of ethanol extract of Ilex hainanensis Merr. (IME) and elucidate its underlying mechanism. METHODS: Thirty-six tumor-bearing mice were randomized into 6 groups (n=6) as follows: model group, IME 25, 50, 100, and 200 mg/kg groups and dacarbazine (DTIC) 70 mg/kg group. The mice in the IME treatment groups were intragastrically administered with IME 25, 50, 100 or 200 mg/kg per day, respectively. The mice in the DTIC group were intraperitoneally injected with DTIC 70 mg/kg every 2 days. The drug administration was lasting for 14 days. The cell viability was evaluated by 3-(4,5-dime-thylthylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay. Flow cytometry was employed to detect cell cycle and apoptosis. The gene and protein expressions of nuclear factor κB-p65 (NF-κB-p65), Bcl-2, B-cell lymphomaextra large (Bcl-xL) and Bax were detected by quantitative real-time polymerase chain reaction and Western blot analyses. Caspases-3, -8, and -9 activities were detected using the colorimetric method. In addition, a B16-F10 melanoma xenograft mouse model was used to evaluate the anti-cancer activity of IME in vivo. Furthermore, a survival experiment of tumor-bearing mice was also performed to evaluate the possible toxicity of IME. RESULTS: IME significantly inhibited the proliferation of B16-F10 cells (P<0.01). Flow cytometric analysis showed that IME induced G1/S cell cycle arrest and apoptosis (both P<0.01). IME inhibited activation of NF-κB, decreased the gene and protein expressions of Bcl-2, Bcl-xL, and increased the gene and protein expressions of Bax (all P<0.01). In addition, IME induced the activation of Caspases-3, -8, and -9 in B16-F10 cells. The study in vivo showed that IME significantly reduced tumor volume (P<0.01), and the inhibitory rate came up to 68.62%. IME also induced large areas of necrosis and intra-tumoral apoptosis that correlated with a reduction in tumor volume. Survival experiment showed that treatment with IME for 14 days significantly prolonged survival time and 20% of mice in the IME 200 mg/kg group were still alive until the 50th day. Notably, IME showed no apparent side-effects during the treatment period. CONCLUSION: IME exhibited significant anti-melanoma activity in vitro and in vivo, suggesting that IME might be a promising effective candidate with lower toxic for malignant melanoma therapy.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Etanol/química , Ilex/química , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Extratos Vegetais/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Melanoma Experimental/enzimologia , Melanoma Experimental/genética , Camundongos Endogâmicos C57BL , Necrose , Extratos Vegetais/efeitos adversos , Extratos Vegetais/farmacologia , Fase S/efeitos dos fármacos , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...