Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Curr Med Sci ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967891

RESUMO

OBJECTIVE: Obesity-induced kidney injury contributes to the development of diabetic nephropathy (DN). Here, we identified the functions of ubiquitin-specific peptidase 19 (USP19) in HK-2 cells exposed to a combination of high glucose (HG) and free fatty acid (FFA) and determined its association with TGF-beta-activated kinase 1 (TAK1). METHODS: HK-2 cells were exposed to a combination of HG and FFA. USP19 mRNA expression was detected by quantitative RT-PCR (qRT-PCR), and protein analysis was performed by immunoblotting (IB). Cell growth was assessed by Cell Counting Kit-8 (CCK-8) viability and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays. Cell cycle distribution and apoptosis were detected by flow cytometry. The USP19/TAK1 interaction and ubiquitinated TAK1 levels were assayed by coimmunoprecipitation (Co-IP) assays and IB. RESULTS: In HG+FFA-challenged HK-2 cells, USP19 was highly expressed. USP19 knockdown attenuated HG+FFA-triggered growth inhibition and apoptosis promotion in HK-2 cells. Moreover, USP19 knockdown alleviated HG+FFA-mediated PTEN-induced putative kinase 1 (PINK1)/Parkin pathway inactivation and increased mitochondrial reactive oxygen species (ROS) generation in HK-2 cells. Mechanistically, USP19 stabilized the TAK1 protein through deubiquitination. Importantly, increased TAK1 expression reversed the USP19 knockdown-mediated phenotypic changes and PINK1/Parkin pathway activation in HG+FFA-challenged HK-2 cells. CONCLUSION: The findings revealed that USP19 plays a crucial role in promoting HK-2 cell dysfunction induced by combined stimulation with HG and FFAs by stabilizing TAK1, providing a potential therapeutic strategy for combating DN.

2.
Cell ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959890

RESUMO

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

3.
Am J Transl Res ; 16(5): 1602-1619, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883391

RESUMO

BACKGROUND: Cepharanthine, a bioactive constituent of Stephania japonica (Thunb.) Miers, is known for its potent anti-tumor properties. Nevertheless, the precise impact of this substance on bladder cancer remains poorly comprehended. The aim of this study was to demonstrate the effect and mechanism of cepharanthine on the metastasis of human bladder cancer cells. METHODS: The application of network pharmacology was utilized to ascertain the possible targets and signaling pathways of cepharanthine in the treatment of bladder cancer. The antiproliferative effects of cepharanthine were evaluated using Cell Counting Kit-8 and colony formation assays. The migration and invasion capabilities were assessed using Transwell assays and wound healing experiments. Proteins related to the Rap1 signaling pathway, cellular migration, cellular invasion, and Epithelial-Mesenchymal Transition (EMT) were quantified by western blotting. RESULTS: Through database screening, 313 cepharanthine-acting targets, 277 candidate disease targets in bladder cancer, 22 intersecting targets, and 12 core targets were confirmed. The involvement of the Rap1 signaling system was revealed by the Kyoto Encyclopedia of Genes and Genomes' pathway enrichment study. Cepharanthine was shown to decrease bladder cancer cell proliferation, migration, and invasion in vitro. Cepharanthine activated the Rap1 signaling pathway by upregulating Epac1 and downregulating E-cadherin and C3G protein expression, leading to increased expression of Rap1 GTP protein and decreased expression of protein kinase D1 and integrin α5. Rap1 signalling pathway activation resulted in the downregulation of migration and invasion-related proteins, matrix metallopeptidase MMP2, MMP9, as well as EMT-related proteins, N-cadherin and Snail, without affecting vimentin expression. CONCLUSION: Cepharanthine inhibits migration, invasion, and EMT of bladder cancer cells by activating the Rap1 signalling pathway. The results offer helpful insights regarding the possible therapeutic use of cepharanthine for treating bladder cancer.

4.
Sci Adv ; 10(26): eadl2675, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941473

RESUMO

Declined memory is a hallmark of Alzheimer's disease (AD). Experiments in rodents and human postmortem studies suggest that serotonin (5-hydroxytryptamine, 5-HT) plays a role in memory, but the underlying mechanisms are unknown. Here, we investigate the role of 5-HT 2C receptor (5-HT2CR) in regulating memory. Transgenic mice expressing a humanized HTR2C mutation exhibit impaired plasticity of hippocampal ventral CA1 (vCA1) neurons and reduced memory. Further, 5-HT neurons project to and synapse onto vCA1 neurons. Disruption of 5-HT synthesis in vCA1-projecting neurons or deletion of 5-HT2CRs in the vCA1 impairs neural plasticity and memory. We show that a selective 5-HT2CR agonist, lorcaserin, improves synaptic plasticity and memory in an AD mouse model. Cumulatively, we demonstrate that hippocampal 5-HT2CR signaling regulates memory, which may inform the use of 5-HT2CR agonists in the treatment of dementia.


Assuntos
Doença de Alzheimer , Memória , Camundongos Transgênicos , Plasticidade Neuronal , Receptor 5-HT2C de Serotonina , Animais , Humanos , Receptor 5-HT2C de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Serotonina/metabolismo , Modelos Animais de Doenças , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
5.
Biochem Pharmacol ; 225: 116334, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824967

RESUMO

Alcoholic liver injury (ALI) stands as a prevalent affliction within the spectrum of complex liver diseases. Prolonged and excessive alcohol consumption can pave the way for liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Recent findings have unveiled the protective role of proline serine-threonine phosphatase interacting protein 2 (PSTPIP2) in combating liver ailments. However, the role of PSTPIP2 in ALI remains mostly unknown. This study aimed to determine the expression profile of PSTPIP2 in ALI and to uncover the mechanism through which PSTPIP2 affects the survival and apoptosis of hepatocytes in ALI, using both ethyl alcohol (EtOH)-fed mice and an EtOH-induced AML-12 cell model. We observed a consistent decrease in PSTPIP2 expression both in vivo and in vitro. Functionally, we assessed the impact of PSTPIP2 overexpression on ALI by administering adeno-associated virus 9 (AAV9)-PSTPIP2 into mice. The results demonstrated that augmenting PSTPIP2 expression significantly shielded against liver parenchymal distortion and curbed caspase-dependent hepatocyte apoptosis in EtOH-induced ALI mice. Furthermore, enforcing PSTPIP2 expression reduced hepatocyte apoptosis in a stable PSTPIP2-overexpressing AML-12 cell line established through lentivirus-PSTPIP2 transfection in vitro. Mechanistically, this study also identified signal transducer and activator of transcription 3 (STAT3) as a direct signaling pathway regulated by PSTPIP2 in ALI. In conclusion, our findings provide compelling evidence that PSTPIP2 has a regulatory role in hepatocyte apoptosis via the STAT3 pathway in ALI, suggesting PSTPIP2 as a promising therapeutic target for ALI.


Assuntos
Apoptose , Fator de Transcrição STAT3 , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/efeitos dos fármacos , Linhagem Celular , Etanol/toxicidade , Etanol/administração & dosagem , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
6.
J Neurosci ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897723

RESUMO

Light plays an essential role in a variety of physiological processes, including vision, mood, and glucose homeostasis. However, the intricate relationship between light and an animal's feeding behavior has remained elusive. Here, we found that light exposure suppresses food intake, whereas darkness amplifies it in male mice. Interestingly, this phenomenon extends its reach to diurnal male Nile grass rats and healthy humans. We further show that lateral habenula (LHb) neurons in mice respond to light exposure, which in turn activates 5-HT neurons in the dorsal Raphe nucleus (DRN). Activation of the LHb → 5-HTDRN circuit in mice blunts darkness-induced hyperphagia, while inhibition of the circuit prevents light-induced anorexia. Together, we discovered a light responsive neural circuit that relays the environmental light signals to regulate feeding behavior in mice.Significance statement Feeding behavior is influenced by a myriad of sensory inputs, but the impact of light exposure on feeding regulation has remained enigmatic. Here, we showed that light exposure diminishes food intake across both nocturnal and diurnal species. Delving deeper, our findings revealed that the LHb → 5-HTDRN neural circuit plays a pivotal role in mediating light-induced anorexia in mice. These discoveries not only enhance our comprehension of the intricate neuronal mechanisms governing feeding in response to light but also offer insights for developing innovative strategies to address obesity and eating disorders.

7.
Front Pharmacol ; 15: 1355531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903989

RESUMO

Background: With a variety of active ingredients, Hedyotis Diffusa (H. diffusa) can treat a variety of tumors. The purpose of our study is based on real-world data and experimental level, to double demonstrate the efficacy and possible molecular mechanism of H. diffusa in the treatment of lung adenocarcinom (LUAD). Methods: Phenotype-genotype and herbal-target associations were extracted from the SymMap database. Disease-gene associations were extracted from the MalaCards database. A molecular network-based correlation analysis was further conducted on the collection of genes associated with TCM and the collection of genes associated with diseases and symptoms. Then, the network separation SAB metrics were applied to evaluate the network proximity relationship between TCM and symptoms. Finally, cell apoptosis experiment, Western blot, and Real-time PCR were used for biological experimental level validation analysis. Results: Included in the study were 85,437 electronic medical records (318 patients with LUAD). The proportion of prescriptions containing H. diffusa in the LUAD group was much higher than that in the non-LUAD group (p < 0.005). We counted the symptom relief of patients in the group and the group without the use of H. diffusa: except for symptoms such as fatigue, palpitations, and dizziness, the improvement rate of symptoms in the user group was higher than that in the non-use group. We selected the five most frequently occurring symptoms in the use group, namely, cough, expectoration, fatigue, chest tightness and wheezing. We combined the above five symptom genes into one group. The overlapping genes obtained were CTNNB1, STAT3, CASP8, and APC. The selection of CTNNB1 target for biological experiments showed that the proliferation rate of LUAD A549 cells in the drug intervention group was significantly lower than that in the control group, and it was concentration-dependent. H. diffusa can promote the apoptosis of A549 cells, and the apoptosis rate of the high-concentration drug group is significantly higher than that of the low-concentration drug group. The transcription and expression level of CTNNB1 gene in the drug intervention group were significantly decreased. Conclusion: H. diffusa inhibits the proliferation and promotes apoptosis of LUAD A549 cells, which may be related to the fact that H. diffusa can regulate the expression of CTNNB1.

8.
ACS Nano ; 18(19): 12401-12411, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701333

RESUMO

Accurate identification of single nucleotide variants (SNVs) in key driver genes holds a significant value for disease diagnosis and treatment. Fluorescent probes exhibit tremendous potential in specific, high-resolution, and rapid detection of SNVs. However, additional steps are required in most post-PCR assays to convert double-stranded DNA (dsDNA) products into single-stranded DNA (ssDNA), enabling them to possess hybridization activity to trigger subsequent reactions. This process not only prolongs the complexity of the experiment but also introduces the risk of losing target information. In this study, we proposed two strategies for enriching active double-stranded DNA, involving PCR based on obstructive groups and cleavable units. Building upon this, we explored the impact of modified units on the strand displacement reaction (SDR) and assessed their discriminatory efficacy for mutations. The results showed that detection of low variant allele frequencies (VAF) as low as 0.1% can be achieved. The proposed strategy allowed orthogonal identification of 45 clinical colorectal cancer tissue samples with 100% specificity, and the results were generally consistent with sequencing results. Compared to existing methods for enriching active targets, our approach offers a more diverse set of enrichment strategies, characterized by the advantage of being simple and fast and preserving original information to the maximum extent. The objective of this study is to offer an effective solution for the swift and facile acquisition of active double-stranded DNA. We anticipate that our work will facilitate the practical applications of SDR based on dsDNA.


Assuntos
DNA , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Humanos , DNA/genética , DNA/química , Neoplasias Colorretais/genética , Reação em Cadeia da Polimerase , Corantes Fluorescentes/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/química
9.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746314

RESUMO

Obesity is a growing global health epidemic with limited effective therapeutics. Serotonin (5-HT) is one major neurotransmitter which remains an excellent target for new weight-loss therapies, but there remains a gap in knowledge on the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using a closed-loop optogenetic feeding paradigm, we showed that the 5-HTDRN→arcuate nucleus (ARH) circuit plays an important role in regulating meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HTDRN neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response to GABAergic inputs can be enhanced by hunger. Additionally, deletion of the GABAA receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the instrumental role of dopaminergic inputs via dopamine receptor D2 in 5-HTDRN neurons in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HTDRN neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, which allows for the initiation of a meal.

10.
Nat Immunol ; 25(6): 1059-1072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38802511

RESUMO

Asthma, the most prevalent respiratory disease, affects more than 300 million people and causes more than 250,000 deaths annually. Type 2-high asthma is characterized by interleukin (IL)-5-driven eosinophilia, along with airway inflammation and remodeling caused by IL-4 and IL-13. Here we utilize IL-5 as the targeting domain and deplete BCOR and ZC3H12A to engineer long-lived chimeric antigen receptor (CAR) T cells that can eradicate eosinophils. We call these cells immortal-like and functional IL-5 CAR T cells (5TIF) cells. 5TIF cells were further modified to secrete an IL-4 mutein that blocks IL-4 and IL-13 signaling, designated as 5TIF4 cells. In asthma models, a single infusion of 5TIF4 cells in fully immunocompetent mice, without any conditioning regimen, led to sustained repression of lung inflammation and alleviation of asthmatic symptoms. These data show that asthma, a common chronic disease, can be pushed into long-term remission with a single dose of long-lived CAR T cells.


Assuntos
Asma , Receptores de Antígenos Quiméricos , Animais , Asma/imunologia , Asma/terapia , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Interleucina-5/imunologia , Interleucina-5/metabolismo , Modelos Animais de Doenças , Humanos , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Eosinófilos/imunologia , Feminino , Interleucina-13/metabolismo , Interleucina-13/imunologia
12.
Vaccine ; 42(19): 4030-4039, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796326

RESUMO

We conducted a phase I, randomized, double-blind, placebo-controlled trial including healthy adults in Sui County, Henan Province, China. Ninety-six adults were randomly assigned to one of three groups (high-dose, medium-dose, and low-dose) at a 3:1 ratio to receive one vaccine dose or placebo. Adverse events up to 28 days after each dose and serious adverse events up to 6 months after all doses were reported. Geometric mean titers and seroconversion rates were measured for anti-rotavirus neutralizing antibodies using microneutralization tests. The rates of total adverse events in the placebo group, low-dose group, medium-dose group, and high-dose group were 29.17 % (12.62 %-51.09 %), 12.50 % (2.66 %-32.36 %), 50.00 % (29.12 %-70.88 %), and 41.67 % (22.11 %-63.36 %), respectively, with no significant difference in the experimental groups compared with the placebo group. The results of the neutralizing antibody assay showed that in the adult group, the neutralizing antibody geometric mean titer at 28 days after full immunization in the low-dose group was 583.01 (95 % confidence interval [CI]: 447.12-760.20), that in the medium-dose group was 899.34 (95 % CI: 601.73-1344.14), and that in the high-dose group was 1055.24 (95 % CI: 876.28-1270.75). The GMT of serum-specific IgG at 28 days after full immunization in the low-dose group was 3444.26 (95 % CI: 2292.35-5175.02), that in the medium-dose group was 6888.55 (95 % CI: 4426.67-10719.6), and that in the high-dose group was 7511.99 (95 % CI: 3988.27-14149.0). The GMT of serum-specific IgA at 28 days after full immunization in the low-dose group was 2332.14 (95 % CI: 1538.82-3534.45), that in the medium-dose group was 4800.98 (95 % CI: 2986.64-7717.50), and that in the high-dose group was 3204.30 (95 % CI: 2175.66-4719.27). In terms of safety, adverse events were mainly Grades 1 and 2, indicating that the safety of the vaccine is within the acceptable range in the healthy adult population. Considering the GMT and positive transfer rate of neutralizing antibodies for the main immunogenicity endpoints in the experimental groups, it was initially observed that the high-dose group had higher levels of neutralizing antibodies than the medium- and low-dose groups in adults aged 18-49 years. This novel inactivated rotavirus vaccine was generally well-tolerated in adults, and the vaccine was immunogenic in adults (ClinicalTrials.gov number, NCT04626856).


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra Rotavirus , Vacinas de Produtos Inativados , Humanos , Adulto , Método Duplo-Cego , Masculino , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/administração & dosagem , Vacinas contra Rotavirus/efeitos adversos , China , Imunogenicidade da Vacina , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/imunologia , Rotavirus/imunologia , Voluntários Saudáveis , Testes de Neutralização
13.
J Ovarian Res ; 17(1): 75, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575997

RESUMO

Umbilical cord-derived mesenchymal stem cell (UCMSC) transplantation has been deeply explored for premature ovarian insufficiency (POI) disease. However, the associated mechanism remains to be researched. To explore whether and how the microRNA 21 (miR-21) functions in POI mice with UCMSCs transplantation, the autoimmune-induced POI mice model was built up, transplanted with or without UCMSCs transfect with the LV-hsa-miR-21-5p/LV-hsa-miR-21-5p-inhibition, with the transfection efficiency analyzed by QRT-PCR. Mice hormone secretion and the anti-Zona pellucida antibody (AZPAb) levels were analyzed, the ovarian morphological changes and folliculogenesis were observed, and the ovarian apoptosis cells were detected to evaluate ovarian function. The expression and localization of the PTEN/Akt/FOXO3a signal pathway-related cytokines were analyzed in mice ovaries.Additionally, the spleen levels of CD8 + CD28-T cells were tested and qualified with its significant secretory factor, interleukin 10 (IL-10). We found that with the LV-hsa-miR-21-5p-inhibition-UCMSCs transplantation, the mice ovarian function can be hardly recovered than mice with LV-NC-UCMSCs transplantation, and the PTEN/Akt/FOXO3a signal pathway was activated. The expression levels of the CD8 + CD28-T cells were decreased, with the decreased levels of the IL-10 expression. In contrast, in mice with the LV-hsa-miR-21-5p-UCMSCs transplantation, the injured ovarian function can be reversed, and the PTEN/AKT/FOXO3a signal pathway was detected activated, with the increased levels of the CD8 + CD28-T cells, and the increased serum levels of IL-10. In conclusion, miR-21 improves the ovarian function recovery of POI mice with UCMSCs transplantation, and the mechanisms may be through suppressing the PTEN/AKT/FOXO3a signal pathway and up-regulating the circulating of the CD8 + CD28-T cells.


Assuntos
Menopausa Precoce , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , Animais , Feminino , Camundongos , Antígenos CD28 , Interleucina-10/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/induzido quimicamente , Proteínas Proto-Oncogênicas c-akt
14.
J Mater Chem B ; 12(17): 4162-4171, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619400

RESUMO

Sonodynamic therapy (SDT) has been recognized as a promising treatment for cancer due to its advantages of superior specificity, non-invasiveness, and deep tissue penetration. However, the antitumor effect of SDT remains restricted by the limited generation of reactive oxygen species (ROS) due to the lack of highly efficient sonosensitizers. In this work, we developed the novel sonosensitizer Pt/CeO2-xSx by constructing oxygen defects through S doping and Pt loading in situ. Large amounts of oxygen defects have been obtained by S doping, endowing Pt/CeO2-xSx with the ability to suppress electron-hole recombination, further promoting ROS production. Moreover, the introduction of Pt nanoparticles can not only produce oxygen in situ for relieving hypoxia but also form a Schottky heterojunction with CeO2-xSx for further inhibiting electron-hole recombination. In addition, Pt/CeO2-xSx could effectively deplete overexpressed glutathione (GSH) via redox reactions, amplifying oxidative stress in the tumor microenvironment (TME). Combined with the excellent POD-mimetic activity, Pt/CeO2-xSx can achieve highly efficient synergistic therapy of SDT and chemodynamic therapy (CDT). All these findings demonstrated that Pt/CeO2-xSx has great potential for cancer therapy, and this work provides a promising direction for designing and constructing efficient sonosensitizers.


Assuntos
Antineoplásicos , Cério , Cério/química , Cério/farmacologia , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom , Platina/química , Platina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/terapia
15.
Food Chem ; 450: 139317, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636378

RESUMO

Microplastics (MPs) occurrence in marine ecosystems is well known, but their accumulation in seaweeds and subsequent human exposure remain understudied. This research quantifies MPs presence in two commonly consumed seaweeds, kelp (Saccharina japonica) and nori (Pyropia yezoensis), in East Asia, revealing widespread contamination dominated by microfibers (<500 µm). Based on dietary patterns, human uptake through seaweed consumption was estimated and quantified. Notably, Chinese people consume an estimated 17,034 MPs/person/year through seaweed consumption, representing 13.1% of their total annual MPs intake. This seaweeds-derived exposure surpasses all other dietary sources, contributing up to 45.5% of overall MPs intake. The highest intake was in South Korea, followed by North Korea, China, and Japan. This research identifies seaweeds as a major, previously overlooked route of dietary MPs exposure. These findings are crucial for comprehensive risk assessments of seaweed consumption and the development of mitigation strategies, particularly for populations in East Asian countries.


Assuntos
Exposição Dietética , Contaminação de Alimentos , Microplásticos , Alga Marinha , Alga Marinha/química , Alga Marinha/metabolismo , Humanos , Microplásticos/análise , Contaminação de Alimentos/análise , Exposição Dietética/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Ásia Oriental , Dieta , Kelp/química , Kelp/metabolismo
16.
Adv Sci (Weinh) ; 11(17): e2305877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444306

RESUMO

Precise and efficient regulation of microglia is vital for ischemic stroke therapy and prognosis. The infiltration of neutrophils into the brain provides opportunities for regulatory drugs across the blood-brain barrier, while hindered by neutrophil extracellular traps (NETs) and targeted delivery of intracerebral drugs to microglia. This study reports an efficient neutrophil hijacking nanoplatform (referred to as APTS) for targeted A151 (a telomerase repeat sequence) delivery to microglia without the generation of NETs. In the middle cerebral artery occlusion (MCAO) mouse model, the delivery efficiency to ischemic stroke tissues increases by fourfold. APTS dramatically reduces the formation of NETs by 2.2-fold via reprogramming NETosis to apoptosis in neutrophils via a reactive oxygen species scavenging-mediated citrullinated histone 3 inhibition pathway. Noteworthy, A151 within neutrophils is repackaged into apoptotic bodies following the death pattern reprogramming, which, when engulfed by microglia, polarizes microglia to an anti-inflammatory M2 phenotype. After four times treatment, the cerebral infarction area in the APTS group decreases by 5.1-fold. Thus, APTS provides a feasible, efficient, and practical drug delivery approach for reshaping the immune microenvironment and treating brain disorders in the central nervous system.


Assuntos
Modelos Animais de Doenças , Armadilhas Extracelulares , AVC Isquêmico , Microglia , Neutrófilos , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , AVC Isquêmico/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Masculino , Nanopartículas , Camundongos Endogâmicos C57BL
17.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38530240

RESUMO

Long-term antitumor efficacy of chimeric antigen receptor (CAR) T cells depends on their functional persistence in vivo. T cells with stem-like properties show better persistence, but factors conferring bona fide stemness to T cells remain to be determined. Here, we demonstrate the induction of CAR T cells into an immortal-like and functional state, termed TIF. The induction of CARTIF cells depends on the repression of two factors, BCOR and ZC3H12A, and requires antigen or CAR tonic signaling. Reprogrammed CARTIF cells possess almost infinite stemness, similar to induced pluripotent stem cells while retaining the functionality of mature T cells, resulting in superior antitumor effects. Following the elimination of target cells, CARTIF cells enter a metabolically dormant state, persisting in vivo with a saturable niche and providing memory protection. TIF represents a novel state of T cells with unprecedented stemness, which confers long-term functional persistence of CAR T cells in vivo and holds broad potential in T cell therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transdução de Sinais
18.
New Phytol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509454

RESUMO

Gene expression is regulated at multiple levels, including RNA processing and DNA methylation/demethylation. How these regulations are controlled remains unclear. Here, through analysis of a suppressor for the OsEIN2 over-expressor, we identified an RNA recognition motif protein SUPPRESSOR OF EIN2 (SOE). SOE is localized in nuclear speckles and interacts with several components of the spliceosome. We find SOE associates with hundreds of targets and directly binds to a DNA glycosylase gene DNG701 pre-mRNA for efficient splicing and stabilization, allowing for subsequent DNG701-mediated DNA demethylation of the transgene promoter for proper gene expression. The V81M substitution in the suppressor mutant protein mSOE impaired its protein stability and binding activity to DNG701 pre-mRNA, leading to transgene silencing. SOE mutation enhances grain size and yield. Haplotype analysis in c. 3000 rice accessions reveals that the haplotype 1 (Hap 1) promoter is associated with high 1000-grain weight, and most of the japonica accessions, but not indica ones, have the Hap 1 elite allele. Our study discovers a novel mechanism for the regulation of gene expression and provides an elite allele for the promotion of yield potentials in rice.

19.
J Control Release ; 367: 661-675, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301928

RESUMO

Bacteria have shown great potential in anti-tumor treatment, and an attenuated strain of Salmonella named VNP20009 has been shown to be safe in clinical trials. However, colonized bacteria recruit neutrophils into the tumor, which release NETs to capture and eliminate bacteria, compromising bacterial-based tumor treatment. In this study, we report a neutrophil hitchhiking nanoparticles (SPPS) that block the formation of NET to enhance bacteria-mediated tumor therapy. In the 4 T1 tumor-bearing mouse model, following 24 h of bacterial therapy, there was an approximately 3.0-fold increase in the number of neutrophils in the bloodstream, while the amount of SPPS homing to tumor tissue through neutrophil hitchhiking increased approximately 2.0-fold. It is worth noting that the NETs in tumors significantly decreased by approximately 2.0-fold through an intracellular ROS scavenging-mediated NETosis reprogramming, thereby increasing bacterial vitality by 1.9-fold in tumors. More importantly, the gene drug (siBcl-2) loaded in SPPS can be re-encapsulated in apoptotic bodies by reprogramming neutrophils from NETosis to apoptosis, and enable the redelivery of drugs to tumor cells, further boosting the antitumor efficacy with a synergistic effect, resulting in about 98% tumor inhibition rate and 90% survival rate.


Assuntos
Armadilhas Extracelulares , Neoplasias , Animais , Camundongos , Neutrófilos , Modelos Animais de Doenças , Neoplasias/tratamento farmacológico , Bactérias
20.
Ann Med Surg (Lond) ; 86(2): 643-649, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333301

RESUMO

Introduction and importance: There is no expert consensus or guidance on perioperative anaesthesia management for spinal surgery of spinal muscular atrophy (SMA) patients with severe scoliosis (Cobb≧90°). We provide a comprehensive summary of the perioperative characteristics observed in patients with SMA and propose an optimized perioperative management strategy for anaesthesia. Methods: This study is a retrospective single-centre research. Twenty-six SMA patients with severe scoliosis underwent posterior spinal fusion surgery from September 2019 to September 2022 were enroled. The main outcomes were to show the patients' characteristics in anaesthesia, intra- and post-operative periods. Outcomes: Nineteen patients underwent awake transnasal/transairway intubation. The median anaesthesia time of 25 patients treated under total intravenous anaesthesia was 425 min. After operation, the Cobb angle and correction rate in the coronal plane were median 54.0° and 54.4%. The length of mechanical ventilation with endotracheal intubation in ICU was median 17.5 h in 8 patients. The ICU length of stay of postoperative hospital was median 19 days. Postoperative pneumonia developed in nine patients, atelectasis in two patients, and pleural effusion in six patients. All patients did not need special oxygen therapy after discharge. Conclusion: Multidisciplinary consultation, lung-protective ventilation strategy, appropriate anaesthetic drugs and reasonable blood transfusion scheme and postoperative monitoring were important in anaesthesia, intraoperative and postoperative periods in the patients of severe scoliosis with spinal muscular atrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...