Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(29): 19803-19812, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37404319

RESUMO

In this study, we successfully synthesized Ag@CuO@rGO (rGO wrapped around Ag/CuO) nanocomposites using AgNO3, Cu(NO)32, and NaOH as raw materials and particularly treated CTAB as a template by chemical precipitation, hydrothermal synthesis, and subsequent high-temperature calcination processes. In addition, transmission electron microscopy (TEM) images revealed that the prepared products appeared to have a mixed structure. The results indicated that the best choice was CuO wrapped around Ag nanoparticles to form a core-shell crystal structure, and the crystal particles were arranged similarly to form an icing sugar block structure and were tightly wrapped by rGO. Moreover, the electrochemical test results demonstrated that Ag@CuO@rGO composite electrode material exhibited high pseudocapacitance performance; the material had a high specific capacity of 1453 F g-1 at a current density of 2.5 mA cm-2, and the charging and discharging cycles remained constant up to 2000 times, indicating that the introduction of Ag improved the cycling stability and reversibility of the CuO@rGO electrode material and increased its specific capacitance, leading to the increase in the specific capacitance of supercapacitors. Therefore, the above results strongly support the application of Ag@CuO@rGO in optotronic devices.

2.
Anal Methods ; 14(46): 4842-4850, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398599

RESUMO

Copper acetate/silver nitrate/polyvinylpyrrolidone was first prepared into nano-hybrid silver-doped copper oxide by electrospinning, and then nano-honeycomb particles were produced through heat-treatment. For the first time, honeycomb Ag@CuO nanoparticles were prepared by electrospinning, and a H2O2 sensor was constructed by modifying the carbon paste electrode (CPE) with the honeycomb Ag@CuO nanoparticles. This work performed the structural, morphological, and phase analysis of the Ag@CuO nanoparticles by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated the synthesis of Ag@CuO hybrid nanoparticles with high purity, and cyclic voltammetry and amperometry show that the Ag@CuO modified electrode has high electrocatalytic performances with fast voltammetric responses and a notably decreased overpotential compared to that of even the CuO modified CPE. In addition, the Ag/CuO-CPE based H2O2 sensor has the highest sensitivity of 1982.14 µA (mmol L-1)-1 cm-2, the lowest detection limit of 0.01 µmol L-1 ((S/N) = 3), and the measured linear response for H2O2 oxidation ranged from 0.05 µmol L-1 to 100 µmol L-1 and 100 µmol L-1 to 1.5 mmol L-1. The proposed method was applied to the determination of H2O2 in coconut fruit samples from canned coconut, and the satisfactory results confirmed the applicability of this sensor in practical analysis.


Assuntos
Nanopartículas , Poríferos , Animais , Peróxido de Hidrogênio , Cobre , Carbono , Frutas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...