Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 9: 902052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795786

RESUMO

The emergence of pseudorabies virus (PRV) variants brings serious harm to the swine industry, and its effective treatments are limited at present. As one of the probiotics, the Lactobacillus species have beneficial characteristics of regulating the balance of intestinal flora, inhibiting the growth of pathogenic bacteria and viruses' proliferation, and improving self-immunity. In this study, Lactobacillus plantarum HN-11 and Lactobacillus casei HN-12 were selected and identified through morphology observation, Gram stain microscopy, 16S rRNA sequencing analysis, and specific amplification of the recA gene and pheS gene. All tested isolates exhibited rapid adaptation to the different conditions, excellent acid, and bile tolerance, and sensitivity to Salmonella, Staphylococcus aureus, and Escherichia coli. The antibiotic susceptibility assay displayed the isolates sensitive to most antibiotics and resistant to Lincomycin and Norfloxacin. Moreover, the supernatants of HN-11 and HN-12 inhibited PRV proliferation in ST cells. The results of animal experiments showed that supplementing the challenged mice with the supernatants of Lactobacillus isolates in advance delayed the course of the disease. PRV was detected in the heart, liver, spleen, lung, kidney, and brain tissues of dead mice in the test groups, and its copies in the lungs were significantly decreased compared with the control mice (P < 0.05). These findings proved the advantages of L. plantarum and L. casei as potential probiotic cultures, which could provide a basis for its application in microecological preparations and functional formulations.

2.
AMB Express ; 11(1): 35, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33646441

RESUMO

Aflatoxin B1 (AFB1) is one of the most dangerous mycotoxins for humans and animals. This study aimed to investigate the effects of compound probiotics (CP), CP supernatant (CPS), AFB1-degradation enzyme (ADE) on chicken embryo primary intestinal epithelium, liver and kidney cell viabilities, and to determine the functions of CP + ADE (CPADE) or CPS + ADE (CPSADE) for alleviating cytotoxicity induced by AFB1. The results showed that AFB1 decreased cell viabilities in dose-dependent and time-dependent manners. The optimal AFB1 concentrations and reactive time for establishing cell damage models were 200 µg/L AFB1 and 12 h for intestinal epithelium cells, 40 µg/L and 12 h for liver and kidney cells. Cell viabilities reached 231.58% (p < 0.05) for intestinal epithelium cells with CP addition, 105.29% and 115.84% (p < 0.05) for kidney and liver cells with CPS additions. The further results showed that intestinal epithelium, liver and kidney cell viabilities were significantly decreased to 87.12%, 88.7% and 84.19% (p < 0.05) when the cells were exposed to AFB1; however, they were increased to 93.49% by CPADE addition, 102.33% and 94.71% by CPSADE additions (p < 0.05). The relative mRNA abundances of IL-6, IL-8, TNF-α, iNOS, NF-κB, NOD1 (except liver cell) and TLR2 in three kinds of primary cells were significantly down-regulated by CPADE or CPSADE addition, compared with single AFB1 group (p < 0.05), indicating that CPADE or CPSADE addition could alleviate cell cytotoxicity and inflammation induced by AFB1 exposure through suppressing the activations of NF-κB, iNOS, NOD1 and TLR2 pathways.

3.
AMB Express ; 9(1): 137, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31482249

RESUMO

Deoxynivalenol (DON) is one of the mycotoxins most frequently encountering in cereal-based foods throughout the world. Saccharomyces cerevisiae was used to alleviate porcine jejunal epithelia cell (IPEC-J2) injury induced by DON in this study. The results indicated that cell viability and proliferation rates were significantly decreased when DON concentrations were increased from 0 to 64 µM after 24 h incubation (p < 0.05). The longer incubation time and higher DON concentrations would cause more serious effects on cell viability. S. cerevisiae could significantly degrade DON and decrease lactic dehydrogenase (LDH) release in the cells induced by DON (p < 0.05). DON (4 µM) could increase necrotic and apoptotic cell rates as well as decrease viable cell rates, compared with the control group (p < 0.05). However, S. cerevisiae addition in the DON group could decrease necrotic, late apoptotic and early apoptotic cell rates by 38.05%, 46.37% and 44.78% respectively, increase viable cell rates by 2.35%, compared with the single DON group (p < 0.05). In addition, S. cerevisiae addition could up-regulate mRNA abundances of IL-6, IL-8 and IL-10 in IPEC-J2 cells (p < 0.05), but down-regulate mRNA abundances of tight junction proteins (TJP-1) and occludin by 36.13% and 50.18% at 1 µM of DON (p < 0.05). It could be concluded that S. cerevisiae was able to alleviate IPEC-J2 cell damage exposed to DON.

4.
Food Chem Toxicol ; 59: 470-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23831311

RESUMO

In order to degrade aflatoxin B1 (AFB1), AFB1-degrading microbes (probiotics) such as Lactobacillus casei, Bacillus subtilis and Pichia anomala, and the AFB1-degrading enzyme from Aspergillus oryzae were selected and combined to make feed additive. Seventy-five 43-day-old male Arbor Acres broilers were randomly divided into 5 groups, 15 broilers for each group. The broilers were given with 5 kinds of diets such as the basal diet, 400 µg/kg AFB1 supplement without feed additive, and 200, 400, 800 µg/kg AFB1 supplement with 0.15% feed additive. The feeding experimental period was 30 d, which was used to determine production performance of broilers. In addition, serum, liver and chest muscle were selected for measuring AFB1 residues, gene expressions, microscopic and antioxidant analyses. The results showed that adding 0.15% feed additive in broiler diets could significantly relieve the negative effect of AFB1 on chicken's production performance and nutrient metabolic rates (P<0.05). It could also improve AFB1 metabolism, hepatic cell structure, antioxidant activity, and many hepatic enzyme gene expressions involved in oxidoreductase, apoptosis, cell growth, immune system and metabolic process (P<0.05). It could be concluded that the feed additive was able to degrade AFB1 and improve animal production.


Assuntos
Aflatoxina B1/antagonistas & inibidores , Aldeído Redutase/uso terapêutico , Antitoxinas/uso terapêutico , Proteínas Fúngicas/uso terapêutico , Regulação Enzimológica da Expressão Gênica , Fígado/metabolismo , Probióticos/uso terapêutico , Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidade , Aldeído Redutase/administração & dosagem , Aldeído Redutase/metabolismo , Animais , Animais Endogâmicos , Antitoxinas/administração & dosagem , Antitoxinas/metabolismo , Aspergillus flavus/enzimologia , Aspergillus flavus/crescimento & desenvolvimento , Proteínas Aviárias/biossíntese , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Carcinógenos/antagonistas & inibidores , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Galinhas , China , Ingestão de Energia , Contaminação de Alimentos , Doenças Transmitidas por Alimentos/etiologia , Doenças Transmitidas por Alimentos/metabolismo , Doenças Transmitidas por Alimentos/patologia , Doenças Transmitidas por Alimentos/prevenção & controle , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lacticaseibacillus casei/crescimento & desenvolvimento , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Pichia/crescimento & desenvolvimento , Probióticos/administração & dosagem , Probióticos/metabolismo , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...