Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(36): 25409-25420, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711488

RESUMO

Particle size significantly affects the properties and therefore the potential applications of multiferroics. However, is there special particle size effect in BiFeO3, which has a spiral modulated spin structure? This is still under investigation for sub-5 nm BiFeO3. In this report, the structural, electronic and magnetic properties are investigated for chemically synthesized BiFeO3 nanoparticles with an average size of 3 nm. We observed nanotwinning features in the specific size regime of the nanoparticles (2-4 nm). A weak Bi-O-Fe coordination and weak covalent nature has been observed in the nanoparticles through high-resolution electron energy loss spectroscopy and theoretical analysis, confirming that BiFeO3 nanoparticles a retain rudimentary R3c phase even at sub-5 nm dimensions. The R3c phase of sub-5 nm BiFeO3 nanoparticles has also been confirmed using Raman spectroscopy and Raman mapping of the vibrational modes. The nanoparticles display cluster spin glass, room temperature ferromagnetism, and a metamictization-davidite phase. The observation of weak magnetic entropy features confirmed the presence of a weak correlation between the magnetic and ferroelectric components. To support our experimental observations, we have simulated a sub-5 nm BiFeO3 nanocluster. Using density functional theory, the ferromagnetic ground state and the presence of a weak covalent nature in the nanocluster is established considering the first Brillouin zone, thus confirming our experimental results. Finding of new physicochemical features in sub-5 nm BiFeO3 would be beneficial for the understanding of the fundamental physical and chemical science as well as potential device development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...