Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770127

RESUMO

This paper focuses on a new test method and theoretical model for measuring and evaluating the reopening pressure during hot dry rock hydraulic fracturing. Firstly, rock blocks of four lithologies were collected from the hot dry rock strata. Hydraulic fracturing tests at high temperatures in real-time were conducted using drilled cubic specimens and drilled cubic specimens with a pre-crack. Breakdown pressure, reopening pressure, and fracture toughness were measured, respectively. In addition, Brazilian splitting tests at high temperatures in real-time were performed using Brazilian disc specimens to measure tensile strength. Secondly, an empirical equation for evaluating the reopening pressure during hot dry rock secondary fracturing was developed based on fracture mechanics and hydraulic fracturing theory. Third, the values calculated by the new equation, considering breakdown pressure, fracture toughness, and tensile strength, were compared to the values determined by the classical equation and to measurement results. It was found that the new equation predicted closer reopening pressure to the measurement results, regardless of the lithology of the hot dry rock. Moreover, with increasing temperature in the specimens, the error between the value calculated by the new equation and the measurement value remained low. In contrast, the difference between the classical equation predictions and the measurement results was widened. In addition, the reopening pressure was positively correlated with tensile strength and fracture toughness. Variations in lithology and temperature affected tensile strength and fracture toughness, which then changed the hot dry rock reopening pressure.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36141979

RESUMO

The stability of high and steep slopes in open-pit mines is closely related to the mine operations and the lives of the surrounding residents, so it is important to ensure the safety and stability of the slopes. Hazard classification and stability analysis of high and steep slopes under different working conditions are studied using the Shizhuyuan non-ferrous metal mine from underground to open-pit mining as a typical example. Firstly, data on rock mechanics parameters were obtained through site investigation and sampling. Then, the slope model of the open-pit mine was established and some slopes were selected in the model for qualitative and quantitative analysis. The strength reduction method and the limit equilibrium method were used to calculate the safety factor under each working condition and point out the potential instability areas. The results show that the selected slopes are safe and stable under all working conditions. Finally, on the premise of maintaining the safety and stability of the mine, the final slope angle was optimized from the original 45°21'35″ to 55°30'41″ to reduce production costs and increase mining efficiency. The final open-pit boundary that meets the stability requirements was eventually obtained.

3.
RSC Adv ; 9(48): 28095-28101, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530485

RESUMO

Phosphogypsum (PG) produced during phosphoric acid production contains significant amounts of arsenic and can potentially cause adverse environmental and health effects. Cement backfill technology is an effective management technique that is used to store PG to prevent such problems. The goal of this paper is to study the influencing factors and mechanism of arsenic stabilization in a PG-based cement backfill process. First, a leaching toxicity test was conducted, which showed that the arsenic concentration in PG batches ranged from 129.1 µg L-1 to 407.1 µg L-1, which were all far above the standard limit (10 µg L-1) set by GB/T 14848-93. In addition, the arsenic content was higher in samples with larger PG particles. Secondly, hydrogen and phosphate ions were added to the backfill to investigate how they influenced arsenic solidification, and the results indicated that phosphate ions, rather than hydrogen ions, delayed the arsenic solidification process. This suggests that controlling the soluble phosphate in PG will help reduce arsenic pollution during backfilling. A toxicity leaching test was carried out after backfill samples were cured for 28 d. All arsenic concentrations were below the standard limit, indicating that the cement backfill technology ensured the long-term solidification and stabilization of arsenic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...