Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38743890

RESUMO

Objective: To explore the construction of a column line chart-based predictive model for postoperative pulmonary infection severity in tracheostomized patients with cranial brain injuries. Methods: The study included 187 patients with cranial brain injuries who underwent tracheostomy between December 2021 and June 2023. These patients were categorized into moderate-to-severe and mild groups based on the severity of postoperative pulmonary infections. Logistic regression analysis was employed to pinpoint the autonomous risk elements for the severity of postoperative pulmonary infection in tracheostomized patients with cranial brain injuries, and a column line chart predictive model was established using these identified independent risk factors. Receiver Operating Characteristic (ROC) curves and calibration curves were used to assess the predictive performance and clinical application potential of the column line chart model for postoperative pulmonary infection risk in tracheostomized patients with cranial brain injuries. Results: Among the 187 patients, 83 (44.39%) experienced moderate-to-severe pulmonary infection. Factors such as age ≥60 years, GCS score <8, a history of long-term smoking, ASA >II, non-washable tracheal tubes, malnutrition, using a ventilator, and longer operative time were more prevalent in the moderate-to-severe group compared to the mild group (P < .05). Multivariate logistic regression analysis revealed that age ≥60 years, GCS score <8, a history of long-term smoking, ASA >II, non-washable tracheal tubes, malnutrition, using a ventilator, and longer operative time were independent risk factors for moderate-to-severe pulmonary infection in tracheostomized patients with cranial brain injuries (P < .05). Build a predictive model based on the above six independent risk factors and plot the ROC curve. ROC curve analysis demonstrated that the AUC values for age ≥60 years, GCS score <8, a history of long-term smoking, ASA >II, non-washable tracheal tubes, malnutrition, using a ventilator, and longer operative time in the column line chart model were 0.578, 0.654, 0.711, 0.652, 0.892, 0.598, 0.712, and 0.752, respectively, indicating good predictive performance of the model. Conclusion: The column line chart-based predictive model for postoperative pulmonary infection severity in tracheostomized patients with cranial brain injuries has a high discriminative power and predictive accuracy. It provides a reliable and intuitive means of predicting the severity of postoperative pulmonary infections in these individuals, enabling healthcare personnel to implement timely intervention measures, thus reducing the occurrence of pulmonary infections.

2.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992711

RESUMO

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Esclerose Múltipla , Masculino , Feminino , Camundongos , Animais , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças , Transdução de Sinais , Progressão da Doença , Receptores Dopaminérgicos
3.
J Neuroinflammation ; 20(1): 203, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674228

RESUMO

Astrocytes contribute to chronic neuroinflammation in a variety of neurodegenerative diseases, including Parkinson's disease (PD), the most common movement disorder. However, the precise role of astrocytes in neuroinflammation remains incompletely understood. Herein, we show that regulator of G-protein signaling 5 (RGS5) promotes neurodegenerative process through augmenting astrocytic tumor necrosis factor receptor (TNFR) signaling. We found that selective ablation of Rgs5 in astrocytes caused an inhibition in the production of cytokines resulting in mitigated neuroinflammatory response and neuronal survival in animal models of PD, whereas overexpression of Rgs5 had the opposite effects. Mechanistically, RGS5 switched astrocytes from neuroprotective to pro-inflammatory property via binding to the receptor TNFR2. RGS5 also augmented TNFR signaling-mediated pro-inflammatory response by interacting with the receptor TNFR1. Moreover, interrupting RGS5/TNFR interaction by either RGS5 aa 1-108 or small molecular compounds feshurin and butein, suppressed astrocytic cytokine production. We showed that the transcription of astrocytic RGS5 was controlled by transcription factor early B cell factor 1 whose expression was reciprocally influenced by RGS5-modulated TNF signaling. Thus, our study indicates that beyond its traditional role in G-protein coupled receptor signaling, astrocytic RGS5 is a key modulator of TNF signaling circuit with resultant activation of astrocytes thereby contributing to chronic neuroinflammation. Blockade of the astrocytic RGS5/TNFR interaction is a potential therapeutic strategy for neuroinflammation-associated neurodegenerative diseases.


Assuntos
Doenças Neuroinflamatórias , Proteínas RGS , Animais , Astrócitos , Transdução de Sinais , Proteínas RGS/genética , Inflamação
5.
Front Pharmacol ; 14: 1148553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089927

RESUMO

Background: The present study aimed to prove the progression of immunoglobulin A nephropathy (IgAN) patients with isolated hematuria based on repeat renal biopsy data for the first time. Methods: 29 IgAN patients with isolated hematuria who received repeat renal biopsies were analyzed retrospectively, while 29 non-isolated hematuria IgAN patients with similar age and background were randomly selected as the control group. Clinical parameters were collected at the time of biopsy. The treatment strategies (conservative treatment with RASS blocker or immunosuppressive treatment) were choosen according to the pathological results at the first renal biopsy. The activity and chronicity indexes of renal lesions were evaluated. Markers of cell inflammation and proliferation were tseted by immunochemistry. The ultrastructure of podocytes was observed by transmission electron microscopy (TEM). Podocyte and oxidative stress marker (NPHS2 and 4-HNE) were detected by immunofluorescence. Results: The IgAN patients with isolated hematuria had better clinical indicators than those with no-isolated hematuria, such as better renal function, higher albumin and lower uric acid. The interval between two biopsies in IgAN patients with isolated hematuria was 630 (interquartile range, 409.5-1,171) days. The hematuria of the patients decreased significantly from 30 (IQR, 4.00-35.00) RBC/ul in the first biopsy to 11 (IQR, 2.50-30.00) RBC/ul in the repeated biopsy (p < 0.05). The level of triglyceride decreased significantly (p < 0.05). The other clinical indicators were not statistically significant (p > 0.05). Deposits of IgA and C3 in the glomerulus were persistent. The activity index decreased, especially cellular crescent formation, while the chronicity index increased. The ultrastructure of podocytes was improved after treatment. The oxidative stress products of podocytes reduced after treatment. Conclusion: Although the clinical indicators of the IgAN patients with isolated hematuria were in the normal range, various acute and chronic pathological changes have occurred, and irreversible chronic changes have been progressing. Cell inflammation and proliferation persisted. Oxidative stress of podocytes was likely to be the therapeutic target. This study provided a strong basis for the progress of IgAN with isolated hematuria through pathological changes before and after treatment. This study will help clinicians recognize the harm of hematuria, change the traditional treatment concept, and help such patients get early treatment.

6.
Proc Natl Acad Sci U S A ; 120(8): e2210643120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36795751

RESUMO

Microglia play a critical role in the pathogenic process of neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). Upon pathological stimulation, microglia are converted from a surveillant to an overactivated phenotype. However, the molecular characters of proliferating microglia and their contributions to the pathogenesis of neurodegeneration remain unclear. Here, we identify chondroitin sulfate proteoglycan 4 (Cspg4, also known as neural/glial antigen 2)-expressing microglia as a specific subset of microglia with proliferative capability during neurodegeneration. We found that the percentage of Cspg4+ microglia was increased in mouse models of PD. The transcriptomic analysis of Cspg4+ microglia revealed that the subcluster Cspg4high microglia displayed a unique transcriptomic signature, which was characterized by the enrichment of orthologous cell cycle genes and a lower expression of genes responsible for neuroinflammation and phagocytosis. Their gene signatures were also distinct from that of known disease-associated microglia. The proliferation of quiescent Cspg4high microglia was evoked by pathological α-synuclein. Following the transplantation in the adult brain with the depletion of endogenous microglia, Cspg4high microglia grafts showed higher survival rates than their Cspg4- counterparts. Consistently, Cspg4high microglia were detected in the brain of AD patients and displayed the expansion in animal models of AD. These findings suggest that Cspg4high microglia are one of the origins of microgliosis during neurodegeneration and may open up a avenue for the treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Microglia/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Fagocitose
7.
Adv Sci (Weinh) ; 10(9): e2207170, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36698264

RESUMO

Gut microbiota-mediated colonization resistance (CR) is crucial in protecting the host from intestinal infections. Sleep deprivation (SD) is an important contributor in the disturbances of intestinal homeostasis. However, whether and how SD affects host CR remains largely unknown. Here, it is shown that SD impairs intestinal CR in mice, whereas nicotinamide mononucleotide (NMN) supplementation restores it. Microbial diversity and metabolomic analyses suggest that gut microbiota and metabolite profiles in SD-treated mice are highly shaped, whereas NMN reprograms these differences. Specifically, the altered gut microbiota in SD mice further incurs the disorder of secondary bile acids pool accompanied by a decrease in deoxycholic acid (DCA). Conversely, NMN supplementation retakes the potential benefits of DCA, which is associated with specific gut microbiota involved in primary bile acids metabolic flux. In animal models of infection, DCA is effective in preventing and treating bacterial infections when used alone or in combination with antibiotics. Mechanistically, DCA alone disrupts membrane permeability and aggravates oxidative damage, thereby reducing intestinal pathogen burden. Meanwhile, exogenous DCA promotes antibiotic accumulation and destroys oxidant-antioxidant system, thus potentiating antibiotic efficacy. Overall, this work highlights the important roles of gut microbiota and bile acid metabolism in the maintenance of intestinal CR.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Mononucleotídeo de Nicotinamida/farmacologia , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Privação do Sono/tratamento farmacológico , Antibacterianos/farmacologia , Ácidos e Sais Biliares/farmacologia
8.
J Exp Med ; 219(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35877595

RESUMO

Astrocyte activation is associated with progressive inflammatory demyelination in multiple sclerosis (MS). The molecular mechanisms underlying astrocyte activation remain incompletely understood. Recent studies have suggested that classical neurotransmitter receptors are implicated in the modulation of brain innate immunity. We investigated the role of dopamine signaling in the process of astrocyte activation. Here, we show the upregulation of dopamine D2 receptor (DRD2) in reactive astrocytes in MS brain and noncanonical role of astrocytic DRD2 in MS pathogenesis. Mice deficient in astrocytic Drd2 exhibit a remarkable suppression of reactive astrocytes and amelioration of experimental autoimmune encephalomyelitis (EAE). Mechanistically, DRD2 regulates the expression of 6-pyruvoyl-tetrahydropterin synthase, which modulates NF-κB activity through protein kinase C-δ. Pharmacological blockade of astrocytic DRD2 with a DRD2 antagonist dehydrocorybulbine remarkably inhibits the inflammatory response in mice lacking neuronal Drd2. Together, our findings reveal previously an uncharted role for DRD2 in astrocyte activation during EAE-associated CNS inflammation. Its therapeutic inhibition may provide a potent lever to alleviate autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Receptores de Dopamina D2/metabolismo
9.
Neurosci Bull ; 38(8): 871-886, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35399136

RESUMO

A wealth of evidence has suggested that gastrointestinal dysfunction is associated with the onset and progression of Parkinson's disease (PD). However, the mechanisms underlying these links remain to be defined. Here, we investigated the impact of deregulation of intestinal dopamine D2 receptor (DRD2) signaling in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration. Dopamine/dopamine signaling in the mouse colon decreased with ageing. Selective ablation of Drd2, but not Drd4, in the intestinal epithelium, caused a more severe loss of dopaminergic neurons in the substantia nigra following MPTP challenge, and this was accompanied by a reduced abundance of succinate-producing Alleoprevotella in the gut microbiota. Administration of succinate markedly attenuated dopaminergic neuronal loss in MPTP-treated mice by elevating the mitochondrial membrane potential. This study suggests that intestinal epithelial DRD2 activity and succinate from the gut microbiome contribute to the maintenance of nigral DA neuron survival. These findings provide a potential strategy targeting neuroinflammation-related neurological disorders such as PD.


Assuntos
Neurônios Dopaminérgicos , Microbioma Gastrointestinal , Neuroproteção , Receptores de Dopamina D2 , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Animais , Modelos Animais de Doenças , Dopamina , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson , Pirrolidinas , Receptores de Dopamina D2/metabolismo , Substância Negra , Succinatos
10.
Neurosci Res ; 180: 72-82, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35257836

RESUMO

Parkinson's disease (PD) is an age-related neurodegenerative disease, mainly characterized by the loss of dopaminergic (DA) neurons in the substantia nigra. Several non-motor symptoms, including those associated with gastrointestinal dysfunction, precede the classical motor symptoms in PD. However, the mechanisms underlying gastrointestinal dysfunction in the prodromal phase of PD remain elusive. Here, we investigated the contribution of the central DA system to cell proliferation in the colonic epithelium. Degeneration of nigrostriatal DA pathway induced by striatal 6-hydroxydopamine (6-OHDA) injection resulted in a marked reduction in cell proliferation in the colonic epithelium as assessed by Ki-67 and bromodeoxyuridine labeling assays. RNA-sequencing analysis confirmed the suppression of cell cycle-related gene expression in the colonic epithelium of 6-OHDA-lesioned mice. Mesencephalic DA neuron degeneration also caused the gut microbiota dysbiosis. Moreover, 6-OHDA-lesioned mice showed profoundly increased vulnerability to dextran sulfate sodium-induced colitis. Together, our study uncovers a crucial role for the integrity of nigral DA neurons in the maintenance of colonic epithelial cell homeostasis. Our data also provide a new strategy for protecting intestinal homeostasis in PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Proliferação de Células , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Epitélio/metabolismo , Camundongos , Doenças Neurodegenerativas/metabolismo , Oxidopamina , Substância Negra/metabolismo
11.
Cell Rep ; 35(7): 109127, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010636

RESUMO

The hippocampus is one of two niches in the mammalian brain with persistent neurogenesis into adulthood. The neurogenic capacity of hippocampal neural stem cells (NSCs) declines with age, but the molecular mechanisms of this process remain unknown. In this study, we find that fibroblast growth factor 13 (FGF13) is essential for the post-natal neurogenesis in mouse hippocampus, and FGF13 deficiency impairs learning and memory. In particular, we find that FGF13A, the nuclear isoform of FGF13, is involved in the maintenance of NSCs and the suppression of neuronal differentiation during post-natal hippocampal development. Furthermore, we find that FGF13A interacts with ARID1B, a unit of Brahma-associated factor chromatin remodeling complex, and suppresses the expression of neuron differentiation-associated genes through chromatin modification. Our results suggest that FGF13A is an important regulator for maintaining the self-renewal and neurogenic capacity of NSCs in post-natal hippocampus, revealing an epigenomic regulatory function of FGFs in neurogenesis.


Assuntos
Epigenômica/métodos , Hipocampo/metabolismo , Neurogênese/genética , Isoformas de Proteínas/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Camundongos
12.
J Craniofac Surg ; 32(1): e77-e80, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32897975

RESUMO

OBJECTIVE: The aim of this study is to analyze the clinical effect of small bone-window craniotomy with microscope combined postoperative ICP monitoring, and further explore an appropriate treatment for HICH patients. METHODS: One hundred fifty patients with HICH were selected according to inclusion and exclusion criteria and divided into 3 groups at random, 50 each group. Patients in 3 groups were treated with conventional craniotomy, small bone-window craniotomy and small bone-window craniotomy combined ICP monitoring respectively. The surgical efficiency, treatment effect and outcomes were recorded and analyzed. RESULTS: The intraoperative blood loss and operation time of small window groups were significantly less than that of conventional group, and the hematoma clearance rate in small window groups were significantly higher than in conventional group (P < 0.05). Compared with conventional group, the hospital stays and mannitol dose used were less in small window groups and least in small window combined ICP monitoring group (P < 0.05). The complication rate in small window combined ICP monitoring group was 10%, which was significantly lower than in conventional group (26%, P < 0.05), while no significant difference was found between small window group (18%) compared with the other 2 groups respectively (P > 0.05). The difference of morality rate between 3 groups wasn't significant (P > 0.05). Three treatment significantly increased the Barthel index score, and the improvement of small window combined ICP monitoring group was significantly higher than in other 2 groups respectively (P < 0.05), while the difference between this two groups wasn't significant (P > 0.05). CONCLUSION: Small bone-window craniotomy is more efficient and convenient than conventional craniotomy in the treatment of HICH. In the meantime, small bone-window craniotomy simultaneous with ICP monitoring significantly improved clinical effect and treatment outcomes of HICH patients.


Assuntos
Craniotomia , Hemorragia Intracraniana Hipertensiva , Humanos , Hemorragia Intracraniana Hipertensiva/cirurgia , Pressão Intracraniana , Crânio , Resultado do Tratamento
13.
BMC Med ; 17(1): 204, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727112

RESUMO

BACKGROUND: Brain innate immunity is vital for maintaining normal brain functions. Immune homeostatic imbalances play pivotal roles in the pathogenesis of neurological diseases including Parkinson's disease (PD). However, the molecular and cellular mechanisms underlying the regulation of brain innate immunity and their significance in PD pathogenesis are still largely unknown. METHODS: Cre-inducible diphtheria toxin receptor (iDTR) and diphtheria toxin-mediated cell ablation was performed to investigate the impact of neuron-glial antigen 2 (NG2) glia on the brain innate immunity. RNA sequencing analysis was carried out to identify differentially expressed genes in mouse brain with ablated NG2 glia and lipopolysaccharide (LPS) challenge. Neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice were used to evaluate neuroinflammatory response in the presence or absence of NG2 glia. The survival of dopaminergic neurons or glial cell activation was evaluated by immunohistochemistry. Co-cultures of NG2 glia and microglia were used to examine the influence of NG2 glia to microglial activation. RESULTS: We show that NG2 glia are required for the maintenance of immune homeostasis in the brain via transforming growth factor-ß2 (TGF-ß2)-TGF-ß type II receptor (TGFBR2)-CX3C chemokine receptor 1 (CX3CR1) signaling, which suppresses the activation of microglia. We demonstrate that mice with ablated NG2 glia display a profound downregulation of the expression of microglia-specific signature genes and remarkable inflammatory response in the brain following exposure to endotoxin lipopolysaccharides. Gain- or loss-of-function studies show that NG2 glia-derived TGF-ß2 and its receptor TGFBR2 in microglia are key regulators of the CX3CR1-modulated immune response. Furthermore, deficiency of NG2 glia contributes to neuroinflammation and nigral dopaminergic neuron loss in MPTP-induced mouse PD model. CONCLUSIONS: These findings suggest that NG2 glia play a critical role in modulation of neuroinflammation and provide a compelling rationale for the development of new therapeutics for neurological disorders.


Assuntos
Antígenos/fisiologia , Encéfalo/imunologia , Imunidade Inata , Neuroglia/fisiologia , Doença de Parkinson/imunologia , Proteoglicanas/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Animais , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/fisiologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
14.
Transl Neurodegener ; 8: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675347

RESUMO

BACKGROUND: Parkinson's disease (PD) is characterized by a chronic loss of dopaminergic neurons and the presence of proteinaceous inclusions (Lewy bodies) within some remaining neurons in the substantia nigra. Recently, astroglial inclusion body has also been found in some neurodegenerative diseases including PD. However, the underlying molecular mechanisms of how astroglial protein aggregation forms remain largely unknown. Here, we investigated the contribution of αB-crystallin (CRYAB), a small heat shock protein, in α-synuclein inclusion formation in astrocytes. METHODS: Small interfering RNA (siRNA)-mediated CRYAB (siCRYAB) knockdown or CRYAB overexpression was performed to investigate the impact of CRYAB on the autophagy in human glioblastoma cell line U251 cells. Co-immunoprecipitation (co-IP) and immunoblotting were used to dissect the interaction among multiple proteins. The clearance of α-synuclein in vitro was evaluated by immunocytochemistry. CRYAB transgenic mice and transgenic mice overexpressing A30P mutant form of human α-synuclein were used to examine the influence of CRYAB to α-synuclein accumulation in vivo. RESULTS: We found that knockdown of CRYAB in U251 cells or primary cultured astrocytes resulted in a marked augmentation of autophagy activity. In contrast, exogenous CRYAB disrupted the assembly of the BAG3-HSPB8-HSC70 complex via binding with BAG3, thereby suppressing the autophagy activity. Furthermore, CRYAB-regulated autophagy has relevance to PD pathogenesis. Knockdown of CRYAB remarkably promoted cytoplasmic clearance of α-synuclein preformed fibrils (PFFs). Conversely, selective overexpression of CRYAB in astrocytes markedly suppressed autophagy leading to the accumulation of α-synuclein aggregates in the brain of transgenic mice expressing human α-synuclein A30P mutant. CONCLUSIONS: This study reveals a novel function for CRYAB as a natural inhibitor of astrocytic autophagy and shows that knockdown of CYRAB may provide a therapeutic target against proteinopathies such as synucleinopathies.

15.
Biochem Biophys Res Commun ; 508(1): 282-288, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30497777

RESUMO

Neuroinflammation is considered a challenging clinical problem. Chronic inflammatory responses play important roles in the onset and progression of various neurodegenerative diseases, including multiple sclerosis (MS). Previous studies have shown that astrocytes express small heat shock protein αB-crystallin (CRYAB) which is capable of inhibiting inflammatory responses in astrocytes per se. However, the underlying mechanisms of CRYAB-induced modulation of neuroinflammation are still not fully understood. In the present study, we investigated the role of extracellular CRYAB in the interaction between microglia and astrocytes in the context of MS-associated neuroinflammation. We found that the expression of CRYAB was profoundly increased in EAE mice. CRYAB was preferentially expressed in astrocytes and could be secreted via exosomes. Levels of exosomal CRYAB secreted from astrocytes were markedly increased under stress conditions. Furthermore, incubation of immortalized astrocytes or microglia cell lines with CRYAB remarkably suppressed astrocytes and microglia-mediated inflammatory responses in both autocrine and paracrine manners. Our results reveal a novel function for extracellular CRYAB in the regulation of neuroinflammation. Targeting extracellular CRYAB-modulated neuroinflammation is a potential therapeutic intervention for MS.


Assuntos
Inflamação/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo
16.
Front Aging Neurosci ; 8: 197, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27601993

RESUMO

Parkinson's disease (PD), the second most common age-associated progressive neurodegenerative disorder, is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SN). The pathogenesis of PD and the mechanisms underlying the degeneration of DA neurons are still not fully understood. Our previous quantitative proteomics study revealed that hyaluronan and proteoglycan binding link protein 2 (Hapln2) is one of differentially expressed proteins in the substantia nigra tissues from PD patients and healthy control subjects. However, the potential role of Hapln2 in PD pathogenesis remains elusive. In the present study, we characterized the expression pattern of Hapln2. In situ hybridization revealed that Hapln2 mRNA was widely expressed in adult rat brain with high abundance in the substantia nigra. Immunoblotting showed that expression levels of Hapln2 were markedly upregulated in the substantia nigra of either human subjects with Parkinson's disease compared with healthy control. Likewise, there were profound increases in Hapln2 expression in neurotoxin 6-hydroxydopamine-treated rat. Overexpression of Hapln2 in vitro increased vulnerability of MES23.5 cells, a dopaminergic cell line, to 6-hydroxydopamine. Moreover, Hapln2 overexpression led to the formation of cytoplasmic aggregates which were co-localized with ubiquitin and E3 ligases including Parkin, Gp78, and Hrd1 in vitro. Endogenous α-synuclein was also localized in Hapln2-containing aggregates and ablation of Hapln2 led to a marked decrease of α-synuclein in insoluble fraction compared with control. Thus, Hapln2 is identified as a novel factor contributing to neurodegeneration in PD. Our data provides new insights into the cellular mechanism underlying the pathogenesis in PD.

17.
Nat Neurosci ; 18(8): 1084-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147533

RESUMO

Dopamine (DA) homeostasis is essential for a variety of brain activities. Dopamine transporter (DAT)-mediated DA reuptake is one of the most critical mechanisms for normal DA homeostasis. However, the molecular mechanisms underlying the regulation of DAT activity in the brain remain poorly understood. Here we show that the Rho-family guanine nucleotide exchange factor protein Vav2 is required for DAT cell surface expression and transporter activity modulated by glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor Ret. Mice deficient in either Vav2 or Ret displayed elevated DAT activity, which was accompanied by an increase in intracellular DA selectively in the nucleus accumbens. Vav2(-/-) mice exposed to cocaine showed reduced DAT activity and diminished behavioral cocaine response. Our data demonstrate that Vav2 is a determinant of DAT trafficking in vivo and contributes to the maintenance of DA homeostasis in limbic DA neuron terminals.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Sistema Límbico/metabolismo , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Proteínas Proto-Oncogênicas c-vav
18.
Dev Neurobiol ; 75(11): 1282-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25762221

RESUMO

Dopaminergic (DA) neurons in the midbrain ventral periaqueductal gray matter (PAG) play critical roles in various physiological and pathophysiological processes including sleep-wake rhyme, antinociception, and drug addiction. However, the molecular mechanisms underlying their development are poorly understood. Here, we showed that PAG DA neurons arose as early as E15.5 in mouse embryos. During the prenatal period, the majority of PAG DA neurons was distributed in the intermediate and caudal regions of the PAG. In the postnatal brain, ∼50% of PAG DA neurons were preferentially located in the caudal portion of the PAG. Moreover, transcription factor early B-cell factor 2 (Ebf2) was transiently expressed in a subset of DA neurons in embryonic ventral mesencephalon. Functional analysis revealed that loss of Ebf2 in vivo caused a marked reduction in the number of DA neurons in the midbrain PAG but not in the substantia nigra and ventral tegmental area. Thus, Ebf2 is identified as a novel and important regulator selectively required for midbrain PAG DA neuron development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Substância Cinzenta Periaquedutal/crescimento & desenvolvimento , Substância Cinzenta Periaquedutal/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bromodesoxiuridina , Contagem de Células , Movimento Celular/fisiologia , Neurônios Dopaminérgicos/citologia , Imuno-Histoquímica , Hibridização In Situ , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Substância Cinzenta Periaquedutal/citologia , Substância Negra/citologia , Substância Negra/crescimento & desenvolvimento , Substância Negra/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/crescimento & desenvolvimento , Área Tegmentar Ventral/fisiologia
19.
Neurobiol Aging ; 36(4): 1686-1691, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683516

RESUMO

Parkinson's disease (PD) is one of the most devastating neurodegenerative disorders. The underlying mechanisms of the characteristic neurodegeneration in the substantia nigra (SN) are still not fully understood. To better understand the molecular events occurring in the SN of PD brain, we used the culture-derived isotope tag-based quantitative proteomics to compare the protein expression profiles in the nigral tissue of PD patients and control subjects. We identified a total of 11 differentially expressed proteins, including alphaB-crystallin (Cryab). Both the levels and pattern of Cryab expression in the SN were validated. It was revealed that Cryab was markedly upregulated in the SN of PD brain. Cryab expression was also upregulated in reactive astrocytes and microglia in a neurotoxin-induced mouse PD model. Moreover, we showed increased expression of Cryab in cytoplasmic inclusions in a subset of glial cells in Parkinsonian brain. Thus, we identified Cryab that is highly expressed in the SN of PD brain and may be involved in the glial pathology during dopaminergic neuron degeneration in PD.


Assuntos
Expressão Gênica , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Regulação para Cima , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Corpos de Inclusão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/citologia , Neuroglia/metabolismo , Substância Negra/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...