Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 148(1-2): 1-15, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33661466

RESUMO

Abnormally altered precipitation patterns induced by climate change have profound global effects on crop production. However, the plant functional responses to various precipitation regimes remain unclear. Here, greenhouse and field experiments were conducted to determine how maize plant functional traits respond to drought, flooding and rewatering. Drought and flooding hampered photosynthetic capacity, particularly when severe and/or prolonged. Most photosynthetic traits recovered after rewatering, with few compensatory responses. Rewatering often elicited high photosynthetic resilience in plants exposed to severe drought at the end of plant development, with the response strongly depending on the drought severity/duration. The associations of chlorophyll concentrations with photosynthetically functional activities were stronger during post-tasseling than pre-tasseling, implying an involvement of leaf age/senescence in responses to episodic drought and subsequent rewatering. Coordinated changes in chlorophyll content, gas exchange, fluorescence parameters (PSII quantum efficiency and photochemical/non-photochemical radiative energy dissipation) possibly contributed to the enhanced drought resistance and resilience and suggested a possible regulative trade-off. These findings provide fundamental insights into how plants regulate their functional traits to deal with sporadic alterations in precipitation. Breeding and management of plants with high resistance and resilience traits could help crop production under future climate change.


Assuntos
Mudança Climática , Desidratação/metabolismo , Secas , Inundações , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Água/metabolismo , Zea mays/metabolismo , Produção Agrícola , Produtos Agrícolas/metabolismo
2.
Sci Total Environ ; 756: 144005, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33277014

RESUMO

Precipitation plays a vital role in maintaining desert ecosystems in which rain events after drought cause soil respiration (Rs) pulses. However, this process and its underlying mechanism remain ambiguous, particularly under climatic warming conditions. This study aims to determine the magnitude and drivers of Rs resilience to rewetting. We conducted a warming experiment in situ in a desert steppe with three climatic warming scenarios-ambient temperature as the control, long-term and moderate warming treatment, and short-term and acute warming treatment. Our findings showed that the average Rs over the measurement period in the control, moderate and acute warming plots were 0.51, 0.30 and 0.30 µmol·CO2·m-2·s-1, respectively, and significantly increased to 1.72, 1.41 and 1.72 µmol·CO2·m-2·s-1, respectively, after rewetting. Both microbial and root respiration substantially increased by rewetting; microbial respiration contributed more than root respiration to total Rs. The Rs significantly increased with microbial biomass carbon and soil organic carbon (SOC) contents. The Rs increase by rewetting might be due to the greater microbial respiration relying heavily on microbial biomass and the larger amount of available SOC after rewetting. A trackable pattern of Rs resilience changes occurred during the daytime. The resilience of Rs in acute warming plots was significantly higher than those in both moderate warming and no warming plots, indicating that Rs resilience might be enhanced with drought severity induced by climatic warming. These results suggest that climatic warming treatment would enhance the drought resilience of soil carbon effluxes following rewatering in arid ecosystems, consequently accelerating the positive feedback of climate change. Therefore, this information should be included in carbon cycle models to accurately assess ecosystem carbon budgets with future climate change scenarios in terrestrial ecosystems, particularly in arid areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...