Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(8): 6600-6611, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353590

RESUMO

Coupling Ni-rich layered oxide cathodes with Si-based anodes is one of the most promising strategies to realize high-energy-density Li-ion batteries. However, unstable interfaces on both cathode and anode sides cause continuous parasitic reactions, resulting in structural degradation and capacity fading of full cells. Herein, lithium tetrafluoro(oxalato) phosphate is synthesized and applied as a multifunctional electrolyte additive to mitigate irreversible volume swing of the SiOx anode and suppress undesirable interfacial evolution of the LiNi0.83Co0.12Mn0.05O2 (NCM) cathode simultaneously, resulting in improved cycle life. Benefiting from its desirable redox thermodynamics and kinetics, the molecularly tailored additive facilitates matching interphases consisting of LiF, Li3PO4, and P-containing macromolecular polymer on both the NCM cathode and SiOx anode, respectively, modulating interfacial chemo-mechanical stability as well as charge transfer kinetics. More encouragingly, the proposed strategy enables 4.4 V 21700 cylindrical batteries (5 Ah) with excellent cycling stability (92.9% capacity retention after 300 cycles) under practical conditions. The key finding points out a fresh perspective on interfacial optimization for high-energy-density battery systems.

2.
Angew Chem Int Ed Engl ; 63(14): e202317922, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366167

RESUMO

Carbon coating layers have been found to improve the catalytic performance of transition metals, which is usually explained as an outcome of electronic synergistic effect. Herein we reveal that the defective graphitic carbon, with a unique interlayer gap of 0.342 nm, can be a highly selective natural molecular sieve. It allows efficient diffusion of hydrogen molecules or radicals both along the in-plane and out-of-plane direction, but sterically hinders the diffusion of molecules with larger kinetic diameter (e.g., CO and O2) along the in-plane direction. As a result, poisonous species lager than 0.342 nm are sieved out, even when their adsorption on the metal is thermodynamically strong; at the same time, the interaction between H2 and the metal is not affected. This natural molecular sieve provides a very chance for constructing robust metal catalysts for hydrogen-relevant processes, which are more tolerant to chemical or electrochemical oxidation or CO-relevant poisoning.

3.
Nat Commun ; 15(1): 176, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167809

RESUMO

Despite the recent achievements in urea electrosynthesis from co-reduction of nitrogen wastes (such as NO3-) and CO2, the product selectivity remains fairly mediocre due to the competing nature of the two parallel reduction reactions. Here we report a catalyst design that affords high selectivity to urea by sequentially reducing NO3- and CO2 at a dynamic catalytic centre, which not only alleviates the competition issue but also facilitates C-N coupling. We exemplify this strategy on a nitrogen-doped carbon catalyst, where a spontaneous switch between NO3- and CO2 reduction paths is enabled by reversible hydrogenation on the nitrogen functional groups. A high urea yield rate of 596.1 µg mg-1 h-1 with a promising Faradaic efficiency of 62% is obtained. These findings, rationalized by in situ spectroscopic techniques and theoretical calculations, are rooted in the proton-involved dynamic catalyst evolution that mitigates overwhelming reduction of reactants and thereby minimizes the formation of side products.

4.
Adv Mater ; 36(6): e2307404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37870392

RESUMO

The rapid development of modern consumer electronics is placing higher demands on the lithium cobalt oxide (LiCoO2 ; LCO) cathode that powers them. Increasing operating voltage is exclusively effective in boosting LCO capacity and energy density but is inhibited by the innate high-voltage instability of the LCO structure that serves as the foundation and determinant of its electrochemical behavior in lithium-ion batteries. This has stimulated extensive research on LCO structural stabilization. Here, it is focused on the fundamental structural understanding of LCO cathode from long-term studies. Multi-scale structures concerning LCO bulk and surface and various structural issues along with their origins and corresponding stabilization strategies with specific mechanisms are uncovered and elucidated at length, which will certainly deepen and advance the knowledge of LCO structure and further its inherent relationship with electrochemical performance. Based on these understandings, remaining questions and opportunities for future stabilization of the LCO structure are also emphasized.

5.
Adv Mater ; 36(6): e2305748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849022

RESUMO

The interfacial compatibility between cathodes and sulfide solid-electrolytes (SEs) is a critical limiting factor of electrochemical performance in all-solid-state lithium-ion batteries (ASSLBs). This work presents a gas-solid interface reduction reaction (GSIRR), aiming to mitigate the reactivity of surface oxygen by inducing a surface reconstruction layer (SRL) . The application of a SRL, CoO/Li2 CO3 , onto LiCoO2 (LCO) cathode results in impressive outcomes, including high capacity (149.7 mAh g-1 ), remarkable cyclability (retention of 84.63% over 400 cycles at 0.2 C), outstanding rate capability (86.1 mAh g-1 at 2 C), and exceptional stability in high-loading cathode (28.97 and 23.45 mg cm-2 ) within ASSLBs. Furthermore, the SRL CoO/Li2 CO3 enhances the interfacial stability between LCO and Li10 GeP2 S12 as well as Li3 PS4 SEs. Significantly, the experiments suggest that the GSIRR mechanism can be broadly applied, not only to LCO cathodes but also to LiNi0.8 Co0.1 Mn0.1 O2 cathodes and other reducing gases such as H2 S and CO, indicating its practical universality. This study highlights the significant influence of the surface chemistry of the oxide cathode on interfacial compatibility, and introduces a surface reconstruction strategy based on the GSIRR process as a promising avenue for designing enhanced ASSLBs.

6.
J Am Chem Soc ; 145(37): 20248-20260, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37680056

RESUMO

As one of the promising sustainable energy storage systems, academic research on rechargeable Zn-air batteries has recently been rejuvenated following development of various 3d-metal electrocatalysts and identification of their dynamic reconstruction toward (oxy)hydroxide, but performance disparity among catalysts remains unexplained. Here, this uncertainty is addressed through investigating the anionic contribution to regulate dynamic reconstruction and battery behavior of 3d-metal selenides. Comparing with the alloy counterpart, anionic chemistry is identified as a performance promoter and further exploited to empower Zn-air batteries. Based on theoretical modeling, Se-resolved operando spectroscopy, and advanced electron microscopy, a three-step Se evolution is established, consisting of oxidation, leaching, and recoordination. The process generates an amorphous (oxy)hydroxide with O-sharing bonded Se motifs that triggers charge redistribution at metal sites and lowers the energetic barrier of their current-driven redox. A pervasive concept of Se back-feeding is then proposed to describe the underlying chemistry for 3d-metal selenides with diversity in crystals or compositions, and the feasibility to fine-tune their behavior is also presented.

7.
Small ; 19(39): e2300802, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259273

RESUMO

Stable cycling of LiCoO2 (LCO) cathode at high voltage is extremely challenging due to the notable structural instability in deeply delithiated states. Here, using the sol-gel coating method, LCO materials (LMP-LCO) are obtained with bulk Mg-doping and surface LiMgPO4 /Li3 PO4 (LMP/LPO) coating. The experimental results suggest that the simultaneous modification in the bulk and at the surface is demonstrated to be highly effective in improving the high-voltage performance of LCO. LMP-LCO cathodes deliver 149.8 mAh g-1 @4.60 V and 146.1 mAh g-1 @4.65 V after 200 cycles at 1 C. For higher cut-off voltages, 4.70 and 4.80 V, LMP-LCO cathodes still achieve 144.9 mAh g-1 after 150 cycles and 136.8 mAh g-1 after 100 cycles at 1 C, respectively. Bulk Mg-dopants enhance the ionicity of CoO bond by tailoring the band centers of Co 3d and O 2p, promoting stable redox on O2- , and thus enhancing stable cycling at high cut-off voltages. Meanwhile, LMP/LPO surface coating suppresses detrimental surface side reactions while allowing facile Li-ion diffusion. The mechanism of high-voltage cycling stability is investigated by combining experimental characterizations and theoretical calculations. This study proposes a strategy of surface-to-bulk simultaneous modification to achieve superior structural stability at high voltages.

8.
Sci Bull (Beijing) ; 68(4): 408-416, 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36725396

RESUMO

Despite the high theoretical capacity, silicon (Si) anode suffers from dramatical capacity loss, due to its massive volume swings (up to 300%) during cycling. Hence, thorough understanding of the structural evolution mechanism is necessary and essential for performance optimization of Si anode. Herein, a multi-scale three-dimensional (3D) image reconstruction technique is firstly applied to visualize the structural evolution process of Si anodes. Three key components (Si particles, inactive components, and voids) in the electrode are quantitatively analyzed by the focused ion beam and scanning electron microscope (FIB-SEM) technology. Furthermore, the average sizes of Si particles were run statistics during the cycling. By combining the componential observation within the electrode (macroscopic information) and the 3D models of the particle with solid electrolyte interphase (SEI) layer (microscopic information), the failure mechanism of Si anode is vividly demonstrated. This work establishes a new methodology to quantitatively analyze the structural and compositional evolution of Si anode, which could be further applied for the studies of many other electrode materials with similar issues.

9.
Adv Mater ; 34(23): e2201716, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35435291

RESUMO

Aqueous Zn-iodine (Zn-I2 ) batteries have been regarded as a promising energy-storage system owing to their high energy/power density, safety, and cost-effectiveness. However, the polyiodide shuttling results in serious active mass loss and Zn corrosion, which limits the cycling life of Zn-I2 batteries. Inspired by the chromogenic reaction between starch and iodine, a structure confinement strategy is proposed to suppress polyiodide shuttling in Zn-I2 batteries by hiring starch, due to its unique double-helix structure. In situ Raman spectroscopy demonstrates an I5 - -dominated I- /I2 conversion mechanism when using starch. The I5 - presents a much stronger bonding with starch than I3 - , inhibiting the polyiodide shuttling in Zn-I2 batteries, which is confirmed by in situ ultraviolet-visible spectra. Consequently, a highly reversible Zn-I2 battery with high Coulombic efficiency (≈100% at 0.2 A g-1 ) and ultralong cycling stability (>50 000 cycles) is realized. Simultaneously, the Zn corrosion triggered by polyiodide is effectively inhibited owing to the desirable shuttling-suppression by the starch, as evidenced by X-ray photoelectron spectroscopy analysis. This work provides a new understanding of the failure mechanism of Zn-I2 batteries and proposes a cheap but effective strategy to realize high-cyclability Zn-I2 batteries.

10.
Chem Soc Rev ; 50(19): 10743-10763, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34605826

RESUMO

Understanding the bulk and interfacial behaviors during the operation of batteries (e.g., Li-ion, Na-ion, Li-O2 batteries, etc.) is of great significance for the continuing improvement of the performance. Electrochemical quartz crystal microbalance (EQCM) is a powerful tool to this end, as it enables in situ investigation into various phenomena, including ion insertion/deinsertion within electrodes, solid nucleation from the electrolyte, interphasial formation/evolution and solid-liquid coordination. As such, EQCM analysis helps to decipher the underlying mechanisms both in the bulk and at the interface. This tutorial review will present the recent progress in mechanistic studies of batteries achieved by the EQCM technology. The fundamentals and unique capability of EQCM are first discussed and compared with other techniques, and then the combination of EQCM with other in situ techniques is also covered. In addition, the recent studies utilizing EQCM technologies in revealing phenomena and mechanisms of various batteries are reviewed. Perspectives regarding the future application of EQCM in battery studies are given at the end.

11.
Cell Death Dis ; 12(2): 173, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568633

RESUMO

Long noncoding RNAs (lncRNAs) play crucial roles in regulating a variety of biological processes in lung adenocarcinoma (LUAD). In our study, we mainly explored the functional roles of a novel lncRNA long intergenic non-protein coding RNA 1426 (LINC01426) in LUAD. We applied bioinformatics analysis to find the expression of LINC01426 was upregulated in LUAD tissue. Functionally, silencing of LINC01426 obviously suppressed the proliferation, migration, epithelial-mesenchymal transition (EMT), and stemness of LUAD cells. Then, we observed that LINC01426 functioned through the hedgehog pathway in LUAD. The effect of LINC01426 knockdown could be fully reversed by adding hedgehog pathway activator SAG. In addition, we proved that LINC01426 could not affect SHH transcription and its mRNA level. Pull-down sliver staining and RIP assay revealed that LINC01426 could interact with USP22. Ubiquitination assays manifested that LINC01426 and USP22 modulated SHH ubiquitination levels. Rescue assays verified that SHH overexpression rescued the cell growth, migration, and stemness suppressed by LINC01426 silencing. In conclusion, LINC01426 promotes LUAD progression by recruiting USP22 to stabilize SHH protein and thus activate the hedgehog pathway.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias Pulmonares/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Fenótipo , Proteólise , RNA Longo não Codificante/genética , Transdução de Sinais , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Regulação para Cima
12.
ACS Appl Mater Interfaces ; 11(17): 16214-16222, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951277

RESUMO

The first-cycle behavior of layered Li-rich oxides, including Li2MnO3 activation and cathode electrolyte interphase (CEI) formation, significantly influences their electrochemical performance. However, the Li2MnO3 activation pathway and the CEI formation process are still controversial. Here, the first-cycle properties of xLi2MnO3·(1- x) LiNi0.3Co0.3Mn0.4O2 ( x = 0, 0.5, 1) cathode materials were studied with an in situ electrochemical quartz crystal microbalance (EQCM). The results demonstrate that a synergistic effect between the layered Li2MnO3 and LiNi0.3Co0.3Mn0.4O2 structures can significantly affect the activation pathway of Li1.2Ni0.12Co0.12Mn0.56O2, leading to an extra-high capacity. It is demonstrated that Li2MnO3 activation in Li-rich materials is dominated by electrochemical decomposition (oxygen redox), which is different from the activation process of pure Li2MnO3 governed by chemical decomposition (Li2O evolution). CEI evolution is closely related to Li+ extraction/insertion. The valence state variation of the metal ions (Ni, Co, Mn) in Li-rich materials can promote CEI formation. This study is of significance for understanding and designing Li-rich cathode-based batteries.

13.
ACS Appl Mater Interfaces ; 11(4): 4065-4073, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30608122

RESUMO

Rechargeable lithium-sulfur batteries are potential candidates for storing electrochemical energy because of their extremely high energy density. However, their practical applications are prohibited by the sluggish charge transfer, the retarding Li ion diffusion, and the shuttle effect of lithium polysulfides. We report here a high-performance cathode material in which a S submicrosphere with a mass fraction of 80% was encapsulated within a permeable Co(OH)2 nanoshell which functions as a physical barrier preventing the sulfur and polysulfides from leaking into the electrolyte and also contributes to the catalytic decomposition of polysulfides during the charge and discharge process. When an interlayer of carbon nanofibers is introduced between the S@Co(OH)2 cathode and the separator, the performance of the Li-S batteries can be further significantly enhanced. Specifically, the S@Co(OH)2 cathode possesses good cycling stability over 1000 cycles with an initial discharge capacity of 1100 mAh g-1 at 2 C and a reversible capacity of 606 mAh g-1. In particular, without the LiNO3 additive, this S@Co(OH)2 cathode also exhibits a Coulombic efficiency as high as 85%, just a little lower than that of commercial electrolyte with LiNO3 additive. Relevant mechanistic studies revealed that such superior performances are attributed to the enhanced internal electrical and ionic conductivity and suppressed shuttling effect, owing to the presence of the Co(OH)2 shell and the carbon-nanofiber interlayer. Theoretical simulations based on density functional theory were also carried out to figure out the interaction between the Co(OH)2 nanosheets and the polysulfides. It revealed that the Co(OH)2 nanoshell, rather than merely working as a physical barrier to trap the polysulfides, could also adsorb polysulfides and catalyze their decomposition during the cycling process, further helping to suppress the shuttling effect.

14.
ACS Appl Mater Interfaces ; 9(25): 21065-21070, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28594161

RESUMO

Although holding a high capacity, Li-rich materials are far from the demand of practical market because of their inherent drawbacks, such as poor initial efficiency and rate capability. Herein, Li-rich materials of Li1.16Mn0.6Ni0.12Co0.12O2 have been prepared via a one-step solvothermal strategy. The detail characterizations demonstrate that the as-prepared materials present morphology of nanoparticle-aggregated hierarchical microspheres and a heterostructure of layered and Li4Mn5O12-type spinel components. Compared to materials of pure-layered structure, layered/spinel heterostructured materials exhibit simultaneously great reversible capacity (302 mAh g-1 at 0.2 C), high initial Coulombic efficiency (94% at 0.2 C) and remarkable rate capability (193 mAh g-1 at 10 C).

15.
Sci Rep ; 7: 42527, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186175

RESUMO

We report the study of Mg cathodic electrochemical deposition on Ti and Au electrode using a multimodal approach by examining the sample area in-situ using liquid cell transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM) and X-ray absorption spectroscopy (XAS). Magnesium Aluminum Chloride Complex was synthesized and utilized as electrolyte, where non-reversible features during in situ charging-discharging cycles were observed. During charging, a uniform Mg film was deposited on the electrode, which is consistent with the intrinsic non-dendritic nature of Mg deposition in Mg ion batteries. The Mg thin film was not dissolvable during the following discharge process. We found that such Mg thin film is hexacoordinated Mg compounds by in-situ STXM and XAS. This study provides insights on the non-reversibility issue and failure mechanism of Mg ion batteries. Also, our method provides a novel generic method to understand the in situ battery chemistry without any further sample processing, which can preserve the original nature of battery materials or electrodeposited materials. This multimodal in situ imaging and spectroscopy provides many opportunities to attack complex problems that span orders of magnitude in length and time scale, which can be applied to a broad range of the energy storage systems.

16.
Chem Commun (Camb) ; 52(25): 4683-6, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26954264

RESUMO

Guar gum (GG) has been applied as a binder for layered lithium-rich cathode materials of Li-ion batteries for the first time. Compared with the conventional PVDF binder, electrodes with GG as the binder exhibit significantly suppressed voltage and capacity fading. This study has introduced a multi-functional binder for layered lithium-rich cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...