Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
Mol Carcinog ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056517

RESUMO

Many studies have shown that tumor cells that survive radiotherapy are more likely to metastasize, but the underlying mechanism remains unclear. Here we aimed to identify epithelial-mesenchymal transition (EMT)-related key genes, which associated with prognosis and radiosensitivity in rectal cancer. First, we obtained differentially expressed genes by analyzing the RNA expression profiles of rectal cancer retrieved from The Cancer Genome Atlas database, EMT-related genes, and radiotherapy-related databases, respectively. Then, Lasso and Cox regression analyses were used to establish an EMT-related prognosis model (EMTPM) based on the identified independent protective factor Fibulin5 (FBLN5) and independent risk gene EHMT2. The high-EMTPM group exhibited significantly poorer prognosis. Then, we evaluated the signature in an external clinical validation cohort. Through in vivo experiments, we further demonstrated that EMTPM effectively distinguishes radioresistant from radiosensitive patients with rectal cancer. Moreover, individuals in the high-EMTPM group showed increased expression of immune checkpoints compared to their counterparts. Finally, pan-cancer analysis of the EMTPM model also indicated its potential for predicting the prognosis of lung squamous cell carcinoma and breast cancer patients undergoing radiotherapy. In summary, we established a novel predictive model for rectal cancer prognosis and radioresistance based on FBLN5 and EHMT2 expressions, and suggested that immune microenvironment may be involved in the process of radioresistance. This predictive model could be used to select management strategies for rectal cancer.

2.
Front Genet ; 15: 1423213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993478

RESUMO

Lactate, a metabolic byproduct, has gained recognition as a highly influential signaling molecule. Lactylation, an emerging form of post-translational modification derived from lactate, plays a crucial role in numerous cellular processes such as inflammation, embryonic development, tumor proliferation, and metabolism. However, the precise molecular mechanisms through which lactylation governs these biological functions in both physiological and pathological contexts remain elusive. Hence, it is imperative to provide a comprehensive overview of lactylation in order to elucidate its significance in biological processes and establish a foundation for forthcoming investigations. This review aims to succinctly outline the process of lactylation modification and the characterization of protein lactylation across diverse organisms. Additionally, A summary of the regulatory mechanisms of lactylation in cellular processes and specific diseases is presented. Finally, this review concludes by delineating existing research gaps in lactylation and proposing primary directions for future investigations.

3.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-39038938

RESUMO

With the increasing prevalence of age-related chronic diseases burdening healthcare systems, there is a pressing need for innovative management strategies. Our study focuses on the gut microbiota, essential for metabolic, nutritional, and immune functions, which undergoes significant changes with aging. These changes can impair intestinal function, leading to altered microbial diversity and composition that potentially influence health outcomes and disease progression. Using advanced metagenomic sequencing, we explore the potential of personalized probiotic supplements in 297 older adults by analyzing their gut microbiota. We identified distinctive Lactobacillus and Bifidobacterium signatures in the gut microbiota of older adults, revealing probiotic patterns associated with various population characteristics, microbial compositions, cognitive functions, and neuroimaging results. These insights suggest that tailored probiotic supplements, designed to match individual probiotic profile, could offer an innovative method for addressing age-related diseases and functional declines. Our findings enhance the existing evidence base for probiotic use among older adults, highlighting the opportunity to create more targeted and effective probiotic strategies. However, additional research is required to validate our results and further assess the impact of precision probiotics on aging populations. Future studies should employ longitudinal designs and larger cohorts to conclusively demonstrate the benefits of tailored probiotic treatments.


Assuntos
Envelhecimento , Suplementos Nutricionais , Microbioma Gastrointestinal , Probióticos , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Humanos , Idoso , Feminino , Masculino , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Lactobacillus/genética , Metagenômica/métodos , Bifidobacterium
4.
Nat Commun ; 15(1): 6303, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060230

RESUMO

Chromosome rearrangements may distort 3D chromatin architectures and thus change gene regulation, yet how 3D chromatin structures evolve in insects is largely unknown. Here, we obtain chromosome-level genomes for four butterfly species, Graphium cloanthus, Graphium sarpedon, Graphium eurypylus with 2n = 30, 40, and 60, respectively, and Papilio bianor with 2n = 60. Together with large-scale Hi-C data, we find that inter-chromosome rearrangements very rarely disrupted the pre-existing 3D chromatin structure of ancestral chromosomes. However, some intra-chromosome rearrangements changed 3D chromatin structures compared to the ancestral configuration. We find that new TADs and subTADs have emerged across the rearrangement sites where their adjacent compartments exhibit uniform types. Two intra-chromosome rearrangements altered Rel and lft regulation, potentially contributing to wing patterning differentiation and host plant choice. Notably, butterflies exhibited chromatin loops between Hox gene cluster ANT-C and BX-C, unlike Drosophila. Our CRISPR-Cas9 experiments in butterflies confirm that knocking out the CTCF binding site of the loops in BX-C affected the phenotypes regulated by Antp in ANT-C, resulting in legless larva. Our results reveal evolutionary patterns of insect 3D chromatin structures and provide evidence that 3D chromatin structure changes can play important roles in the evolution of traits.


Assuntos
Borboletas , Cromatina , Evolução Molecular , Genoma de Inseto , Animais , Borboletas/genética , Cromatina/metabolismo , Cromatina/genética , Rearranjo Gênico/genética , Cromossomos de Insetos/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética
5.
Int J Surg ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954658

RESUMO

BACKGROUND: Tibial cortex transverse transport (TTT) surgery has become an ideal treatment for patients with type 2 severe diabetic foot ulcerations (DFUs) while conventional treatments are ineffective. Based on our clinical practice experience, the protective immune response from TTT surgery may play a role against infections to promote wound healing in patients with DFUs. Therefore, this research aimed to systematically study the specific clinical efficacy and the mechanism of TTT surgery. MATERIALS AND METHODS: Between June 2022 and September 2023, 68 patients with type 2 severe DFUs were enrolled and therapized by TTT surgery in this cross-sectional and experimental study. Major clinical outcomes including limb salvage rate and antibiotics usage rate were investigated. Ten clinical characteristics and laboratory features of glucose metabolism and kidney function were statistically analyzed. Blood samples from 6 key time points of TTT surgery were collected for label-free proteomics and clinical immune biomarker analysis. Besides, tissue samples from 3 key time points were for spatially resolved metabolomics and transcriptomics analysis, as well as applied to validate the key TTT-regulated molecules by RT-qPCR. RESULTS: Notably, 64.7% of patients did not use antibiotics during the entire TTT surgery. TTT surgery can achieve a high limb salvage rate of 92.6% in patients with unilateral or bilateral DFUs. Pathway analysis of a total of 252 differentially expressed proteins (DEPs) from the proteomic revealed that the immune response induced by TTT surgery at different stages was first comprehensively verified through multi-omics combined with immune biomarker analysis. The function of upward transport was activating the systemic immune response, and wound healing occurs with downward transport. The spatial metabolic characteristics of skin tissue from patients with DFUs indicated downregulated levels of stearoylcarnitine and the glycerophospholipid metabolism pathway in skin tissue from patients with severe DFUs. Finally, the expressions of PRNP (prion protein) to activate the immune response, PLCB3 (PLCB3, phospholipase C beta 3) and VE-cadherin to play roles in neovascularization, and PPDPF (pancreatic progenitor cell differentiation and proliferation factor), LAMC2 (laminin subunit gamma 2) and SPRR2G (small proline rich protein 2G) to facilitate the developmental process mainly keratinocyte differentiation were statistically significant in skin tissues through transcriptomic and RT-qPCR analysis. CONCLUSION: Tibial cortex transverse transport (TTT) surgery demonstrates favorable outcomes for patients with severe type 2 DFUs by activating a systemic immune response, contributing to anti-infection, ulcer recurrence, and the limb salvage rate for unilateral or bilateral DFUs. The specific clinical immune responses, candidate proteins, genes, and metabolic characteristics provide directions for in-depth mechanistic research on TTT surgery. Further research and public awareness are needed to optimize TTT surgery in patients with severe type 2 DFUs.

6.
Mol Ther Nucleic Acids ; 35(3): 102246, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39027419

RESUMO

Huntington's disease (HD) is an autosomal dominant disease caused by the expansion of cytosine-adenine-guanine (CAG) repeats in one copy of the HTT gene (mutant HTT, mHTT). The unaffected HTT gene encodes wild-type HTT (wtHTT) protein, which supports processes important for the health and function of the central nervous system. Selective lowering of mHTT for the treatment of HD may provide a benefit over nonselective HTT-lowering approaches, as it aims to preserve the beneficial activities of wtHTT. Targeting a heterozygous single-nucleotide polymorphism (SNP) where the targeted variant is on the mHTT gene is one strategy for achieving allele-selective activity. Herein, we investigated whether stereopure phosphorothioate (PS)- and phosphoryl guanidine (PN)-containing oligonucleotides can direct allele-selective mHTT lowering by targeting rs362273 (SNP3). We demonstrate that our SNP3-targeting molecules are potent, durable, and selective for mHTT in vitro and in vivo in mouse models. Through comparisons with a surrogate for the nonselective investigational compound tominersen, we also demonstrate that allele-selective molecules display equivalent potency toward mHTT with improved durability while sparing wtHTT. Our preclinical findings support the advancement of WVE-003, an investigational allele-selective compound currently in clinical testing (NCT05032196) for the treatment of patients with HD.

7.
Open Life Sci ; 19(1): 20220890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911926

RESUMO

Adverse cardiac mechanical remodeling is critical for the progression of heart failure following myocardial infarction (MI). We previously demonstrated the involvement of RIP3-mediated necroptosis in the loss of functional cardiomyocytes and cardiac dysfunction post-MI. Herein, we investigated the role of RIP3 in NOD-like receptor protein 3 (NLRP3)-mediated inflammation and evaluated the effects of RIP3 knockdown on myocardial mechanics and functional changes after MI. Our findings revealed that mice with MI for 4 weeks exhibited impaired left ventricular (LV) myocardial mechanics, as evidenced by a significant decrease in strain and strain rate in each segment of the LV wall during both systole and diastole. However, RIP3 knockdown ameliorated cardiac dysfunction by improving LV myocardial mechanics not only in the anterior wall but also in other remote nonischemic segments of the LV wall. Mechanistically, knockdown of RIP3 effectively inhibited the activation of the nuclear factor kappa-B (NF-κB)/NLRP3 pathway, reduced the levels of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) in the heart tissues, and mitigated adverse cardiac remodeling following MI. These results suggest that downregulation of RIP3 holds promise for preventing myocardial inflammation and cardiac mechanical remodeling following MI by regulating the NF-κB/NLRP3 pathway.

8.
Sci Rep ; 14(1): 13364, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862597

RESUMO

This study aims to take higher-education students as examples to understand and compare artistic and engineering mindsets in creative processes using EEG. Fifteen Master of Fine Arts (MFA) visual arts and fifteen Master of Engineering (MEng) design engineering students were recruited and asked to complete alternative uses tasks wearing an EEG headset. The results revealed that (1) the engineering-mindset students responded to creative ideas faster than artistic-mindset students. (2) Although in creative processes both artistic- and engineering-mindset students showed Theta, Alpha, and Beta wave activity, the active brain areas are slightly different. The active brain areas of artistic-mindset students in creative processes are mainly in the frontal and occipital lobes; while the whole brain (frontal, oriental, temporal, and occipital lobes) was active in creative processes of engineering-mindset students. (3) During the whole creative process, the brain active level of artistic-mindset students was higher than that of engineering-mindset students. The results of this study fills gaps in existing research where only active brain areas and band waves were compared between artistic- and engineering-mindset students in creative processes. For quick thinking in terms of fluency of generating creative ideas, engineering students have an advantage in comparison to those from the visual arts. Also, the study provided more evidence that mindset can affect the active levels of the brain areas. Finally, this study provides educators with more insights on how to stimulate students' creative ability.


Assuntos
Criatividade , Eletroencefalografia , Engenharia , Estudantes , Humanos , Engenharia/educação , Feminino , Masculino , Adulto Jovem , Encéfalo/fisiologia , Adulto , Arte
9.
Cell Prolif ; : e13663, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803043

RESUMO

Macrophage pyroptosis is of key importance to host defence against pathogen infections and may participate in the progression and recovery of periodontitis. However, the role of pyroptotic macrophages in regulating periodontal ligament stem cells (PDLSCs), the main cell source for periodontium renewal, remains unclear. First, we found that macrophage pyroptosis were enriched in gingiva tissues from periodontitis patients compared with those of healthy people through immunofluorescence. Then the effects of pyroptotic macrophages on the PDLSC osteogenic differentiation were investigated in a conditioned medium (CM)-based coculture system in vitro. CM derived from pyroptotic macrophages inhibited the osteogenic differentiation-related gene and protein levels, ALP activity and mineralized nodule formation of PDLSCs. The osteogenic inhibition of CM was alleviated when pyroptosis was inhibited by VX765. Further, untargeted metabolomics showed that glutamate limitation may be the underlying mechanism. However, exogenous glutamate supplementation aggravated the CM-inhibited osteogenic differentiation of PDLSCs. Moreover, CM increased extracellular glutamate and decreased intracellular glutamate levels of PDLSCs, and enhanced the gene and protein expression levels of system xc - (a cystine/glutamate antiporter). After adding cystine to CM-based incubation, the compromised osteogenic potency of PDLSCs was rescued. Our data suggest that macrophage pyroptosis is related to the inflammatory lesions of periodontitis. Either pharmacological inhibition of macrophage pyroptosis or nutritional supplements to PDLSCs, can rescue the compromised osteogenic potency caused by pyroptotic macrophages.

10.
Cell Rep ; 43(6): 114306, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38819989

RESUMO

Gut Akkermansia muciniphila (Akk) has been implicated in impacting immunotherapy or oncogenesis. This study aims to dissect the Akk-associated tumor immune ecosystem (TIME) by single-cell profiling coupled with T cell receptor (TCR) sequencing. We adopted mouse cancer models under anti-PD-1 immunotherapy, combined with oral administration of three forms of Akk, including live Akk, pasteurized Akk (Akk-past), or its membrane protein Amuc_1100 (Amuc). We show that live Akk is most effective in activation of CD8 T cells by rescuing the exhausted type into cytotoxic subpopulations. Remarkably, only live Akk activates MHC-II-pDC pathways, downregulates CXCL3 in Bgn(+)Dcn(+) cancer-associated fibroblasts (CAFs), blunts crosstalk between Bgn(+)Dcn(+) CAFs and PD-L1(+) neutrophils by a CXCL3-PD-L1 axis, and further suppresses the crosstalk between PD-L1(+) neutrophils and CD8 T cells, leading to the rescue of exhausted CD8 T cells. Together, this comprehensive picture of the tumor ecosystem provides deeper insights into immune mechanisms associated with gut Akk-dependent anti-PD-1 immunotherapy.


Assuntos
Akkermansia , Linfócitos T CD8-Positivos , Imunoterapia , Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Camundongos , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores CXCR3/metabolismo , Microambiente Tumoral , Neoplasias/imunologia , Neoplasias/terapia
11.
ACS Sens ; 9(6): 3096-3104, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753414

RESUMO

Lateral flow assays (LFAs) are currently the most popular point-of-care diagnostics, rapidly transforming disease diagnosis from expensive doctor checkups and laboratory-based tests to potential on-the-shelf commodities. Yet, their sensitive element, a monoclonal antibody, is expensive to formulate, and their long-term storage depends on refrigeration technology that cannot be met in resource-limited areas. In this work, LCB1 affibodies (antibody mimetic miniproteins) were conjugated to bovine serum albumin (BSA) to afford a high-avidity synthetic capture (LCB1-BSA) capable of detecting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and virus like particles (VLPs). Substituting the monoclonal antibody 2B04 for LCB1-BSA (stable up to 60 °C) significantly improved the thermal stability, shelf life, and affordability of plasmonic-fluor-based LFAs (p-LFAs). Furthermore, this substitution significantly improved the sensitivity of p-LFAs toward the spike protein and VLPs with precise quantitative ability over 2 and 3 orders of magnitude, respectively. LCB1-BSA sensors could detect VLPs at 100-fold lower concentrations, and this improvement, combined with their robust nature, enabled us to develop an aerosol sampling technology to detect aerosolized viral particles. Synthetic captures like LCB1-BSA can increase the ultrasensitivity, availability, sustainability, and long-term accuracy of LFAs while also decreasing their manufacturing costs.


Assuntos
Aerossóis , Antígenos Virais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Aerossóis/química , Glicoproteína da Espícula de Coronavírus/imunologia , Antígenos Virais/análise , Antígenos Virais/imunologia , Soroalbumina Bovina/química , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Imunoensaio/métodos , Temperatura , Limite de Detecção
12.
Pathol Res Pract ; 257: 155313, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642509

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a highly heterogeneous malignancy, and patients often have different responses to treatment. In this study, the genetic characteristics related to exosome formation and secretion procedure were used to predict chemoresistance and guide the individualized treatment of patients. METHODS: Firstly, seven microarray datasets in Gene Expression Omnibus (GEO) and RNA-Seq dataset from the Cancer Genome Atlas (TCGA) were used to analysis the transcriptome profiles and associated characteristics of CRC patients. Then, a predictive model based on gene features linked to exosome formation and secretion was created and validated using Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine learning. Finally, we evaluated the model using chemoresistant/chemosensitive cells and tissues by immunofluorescence (IF), western blot (WB), quantitative real-time PCR (qRT-PCR) and immunocytochemistry (IHC) experiments, and the predictive value of integrated model in the clinical validation cohort were performed by Receiver Operating Characteristic (ROC) and Kaplan-Meier (K-M) curves analyses. RESULTS: We established a risk score signature based on three genes related to exosome secretion in CRC. Better Overall Survival (OS) and greater chemosensitivity were seen in the low-risk group, whereas the high-risk group exhibited chemoresistance and a subpar response to immune checkpoint blockade (ICB) therapy. Higher expression of the model genes EXOC2, EXOC3 and STX4 were observed in chemoresistant cells and specimens. The AUC of 5-year disease-free survival (DFS) was 0.804. Compared with that in the low-risk group, patients' DFS was found to be significantly worse in the high-risk group. CONCLUSIONS: In summary, the gene signature related to exosome formation and secretion could reliably predict patients' chemosensitivity and ICB treatment response, which providing new independent biomarkers for the treatment of CRC.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Exossomos , Transcriptoma , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , Exossomos/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Idoso , Regulação Neoplásica da Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Prognóstico
13.
Diagnostics (Basel) ; 14(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611666

RESUMO

A crucial challenge in critical settings like medical diagnosis is making deep learning models used in decision-making systems interpretable. Efforts in Explainable Artificial Intelligence (XAI) are underway to address this challenge. Yet, many XAI methods are evaluated on broad classifiers and fail to address complex, real-world issues, such as medical diagnosis. In our study, we focus on enhancing user trust and confidence in automated AI decision-making systems, particularly for diagnosing skin lesions, by tailoring an XAI method to explain an AI model's ability to identify various skin lesion types. We generate explanations using synthetic images of skin lesions as examples and counterexamples, offering a method for practitioners to pinpoint the critical features influencing the classification outcome. A validation survey involving domain experts, novices, and laypersons has demonstrated that explanations increase trust and confidence in the automated decision system. Furthermore, our exploration of the model's latent space reveals clear separations among the most common skin lesion classes, a distinction that likely arises from the unique characteristics of each class and could assist in correcting frequent misdiagnoses by human professionals.

14.
Immunobiology ; 229(3): 152805, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669865

RESUMO

Tumor-associated macrophages (TAMs), one of the major immune cell types in colorectal cancer (CRC) tumor microenvironment (TME), play indispensable roles in immune responses against tumor progression. In this study, we aimed to know whether the extensive inter and intra heterogeneity of TAMs contributes to the clinical outcomes and indications for immune checkpoint blockade (ICB) in CRC. We used single-cell RNA sequencing (scRNA-Seq) data from 60 CRC patients and charactrized TAMs based on anatomic locations, tumor regions, stages, grades, metastatic status, MSS/MSI classification and pseudotemporal differentiation status. We then defined a catalog of 21 gene modules that determine macrophage status, and identified 7 of them as relevant to clinical outcomes and 11 as indications for ICB therapy. On this basis, we constructed a unique TAM subgroup profile, aiming to find features that may be highly responsive to immunotherapy for the CRC with poor prognosis under conventional treatment. This TAM subpopulation is enriched in tumors and is associated with poor prognosis, but exhibits a high immunotherapy response signature (HIM TAM). Further spatial transcriptome analysis and ligand-receptor interaction analysis confirmed that HIM TAM is involved in shaping TIME, especially the regulation of T cells. Our study provides insights into different TAM subtypes, highlights the importance of TAM heterogeneity in relation to patient prognosis and immunotherapy response, and reveals potential immunotherapy strategies based on TAM characteristics for CRC that does not respond well to conventional therapy.


Assuntos
Neoplasias Colorretais , Inibidores de Checkpoint Imunológico , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Microambiente Tumoral/imunologia , Prognóstico , Imunoterapia/métodos , Resultado do Tratamento , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Transcriptoma , Análise de Célula Única , Feminino
15.
BMJ Open ; 14(4): e084496, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670615

RESUMO

INTRODUCTION: Whether gastric cancer (GC) patients with deficient mismatch repair or microsatellite instability-high (dMMR/MSI-H) benefit from perioperative (neoadjuvant and/or adjuvant) chemotherapy is controversial. This protocol delineates the planned scope and methods for a systematic review and meta-analysis that aims to compare the efficacy of perioperative chemotherapy with surgery alone in resectable dMMR/MSI-H GC patients. METHODS AND ANALYSIS: This study protocol is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols-P guideline. PubMed, Embase, Cochrane (CENTRAL), and the Web of Science databases will be searched, supplemented by a secondary screening of relevant records. Both randomised controlled trials and non-randomised studies will be included in this study. The primary and secondary outcomes under scrutiny will be overall survival, disease-free survival and progression-free survival. Two reviewers will independently screen studies, extract data and assess the risk of bias. We will analyse different treatment settings (eg, neoadjuvant or adjuvant or combined as perioperative chemotherapies) separately and conduct sensitivity analyses. ETHICS AND DISSEMINATION: No ethics approval is required for this systematic review and meta-analysis, as no individual patient data will be collected. The findings of our study will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42023494276.


Assuntos
Reparo de Erro de Pareamento de DNA , Instabilidade de Microssatélites , Terapia Neoadjuvante , Neoplasias Gástricas , Revisões Sistemáticas como Assunto , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Quimioterapia Adjuvante , Terapia Neoadjuvante/métodos , Metanálise como Assunto , Projetos de Pesquisa
16.
World J Gastrointest Oncol ; 16(4): 1296-1308, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660646

RESUMO

BACKGROUND: Preoperative knowledge of mutational status of gastrointestinal stromal tumors (GISTs) is essential to guide the individualized precision therapy. AIM: To develop a combined model that integrates clinical and contrast-enhanced computed tomography (CE-CT) features to predict gastric GISTs with specific genetic mutations, namely KIT exon 11 mutations or KIT exon 11 codons 557-558 deletions. METHODS: A total of 231 GIST patients with definitive genetic phenotypes were divided into a training dataset and a validation dataset in a 7:3 ratio. The models were constructed using selected clinical features, conventional CT features, and radiomics features extracted from abdominal CE-CT images. Three models were developed: ModelCT sign, modelCT sign + rad, and model CTsign + rad + clinic. The diagnostic performance of these models was evaluated using receiver operating characteristic (ROC) curve analysis and the Delong test. RESULTS: The ROC analyses revealed that in the training cohort, the area under the curve (AUC) values for modelCT sign, modelCT sign + rad, and modelCT sign + rad + clinic for predicting KIT exon 11 mutation were 0.743, 0.818, and 0.915, respectively. In the validation cohort, the AUC values for the same models were 0.670, 0.781, and 0.811, respectively. For predicting KIT exon 11 codons 557-558 deletions, the AUC values in the training cohort were 0.667, 0.842, and 0.720 for modelCT sign, modelCT sign + rad, and modelCT sign + rad + clinic, respectively. In the validation cohort, the AUC values for the same models were 0.610, 0.782, and 0.795, respectively. Based on the decision curve analysis, it was determined that the modelCT sign + rad + clinic had clinical significance and utility. CONCLUSION: Our findings demonstrate that the combined modelCT sign + rad + clinic effectively distinguishes GISTs with KIT exon 11 mutation and KIT exon 11 codons 557-558 deletions. This combined model has the potential to be valuable in assessing the genotype of GISTs.

17.
Front Oncol ; 14: 1334592, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665948

RESUMO

Cholangiocarcinoma is an aggressive and heterogeneous malignancy originating from the bile duct epithelium. It is associated with poor prognosis and high mortality. The global incidence of cholangiocarcinoma is rising, and there is an urgent need for effective early diagnosis and treatment strategies to reduce the burden of this devastating tumor. Small extracellular vesicles, including exosomes and microparticles, are nanoscale vesicles formed by membranes that are released both normally and pathologically from cells, mediating the intercellular transfer of substances and information. Recent studies have demonstrated the involvement of small extracellular vesicles in numerous biological processes, as well as the proliferation, invasion, and metastasis of tumor cells. The present review summarizes the tumorigenic roles of small extracellular vesicles in the cholangiocarcinoma microenvironment. Owing to their unique composition, accessibility, and stability in biological fluids, small extracellular vesicles have emerged as ideal biomarkers for use in liquid biopsies for diagnosing and outcome prediction of cholangiocarcinoma. Specific tissue tropism, theoretical biocompatibility, low clearance, and strong biological barrier penetration of small extracellular vesicles make them suitable drug carriers for cancer therapy. Furthermore, the potential value of small extracellular vesicle-based therapies for cholangiocarcinoma is also reviewed.

19.
Front Cell Dev Biol ; 12: 1354132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495620

RESUMO

The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.

20.
Adv Sci (Weinh) ; 11(18): e2309562, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460171

RESUMO

The viscoelasticity of mechanically sensitive tissues such as periodontal ligaments (PDLs) is key in maintaining mechanical homeostasis. Unfortunately, PDLs easily lose viscoelasticity (e.g., stress relaxation) during periodontitis or dental trauma, which disrupt cell-extracellular matrix (ECM) interactions and accelerates tissue damage. Here, Pluronic F127 diacrylate (F127DA) hydrogels with PDL-matched stress relaxation rates and high elastic moduli are developed. The hydrogel viscoelasticity is modulated without chemical cross-linking by controlling precursor concentrations. Under cytomechanical loading, F127DA hydrogels with fast relaxation rates significantly improved the fibrogenic differentiation potential of PDL stem cells (PDLSCs), while cells cultured on F127DA hydrogels with various stress relaxation rates exhibited similar fibrogenic differentiation potentials with limited cell spreading and traction forces under static conditions. Mechanically, faster-relaxing F127DA hydrogels leveraged cytomechanical loading to activate PDLSC mechanotransduction by upregulating integrin-focal adhesion kinase pathway and thus cytoskeletal rearrangement, reinforcing cell-ECM interactions. In vivo experiments confirm that faster-relaxing F127DA hydrogels significantly promoted PDL repair and reduced abnormal healing (e.g., root resorption and ankyloses) in delayed replantation of avulsed teeth. This study firstly investigated how matrix nonlinear viscoelasticity influences the fibrogenesis of PDLSCs under mechanical stimuli, and it reveals the underlying mechanobiology, which suggests novel strategies for PDL regeneration.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Ligamento Periodontal , Regeneração , Estresse Mecânico , Ligamento Periodontal/citologia , Ligamento Periodontal/fisiologia , Regeneração/fisiologia , Hidrogéis/química , Materiais Biocompatíveis/química , Animais , Humanos , Células Cultivadas , Viscosidade , Poloxâmero/química , Poloxâmero/farmacologia , Células-Tronco/citologia , Elasticidade , Diferenciação Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...