Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 243: 120345, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516074

RESUMO

Manganese (Mn) oxides are extensively used to oxidize As(III) present in ground, drinking, and waste waters to the less toxic and more easily removable As(V). The common presence of multiple other cations in natural waters, and more especially of redox-sensitive ones such as Fe2+, may however significantly hamper As(III) oxidation and its subsequent removal. The present work investigates experimentally the influence of Mn(III) chelating agents on As(III) oxidation process in such environmentally relevant complex systems. Specifically, the influence of sodium pyrophosphate (PP), an efficient Mn(III) chelating agent, on As(III) oxidation by birnessite in the presence of Fe(II) was investigated using batch experiments at circum-neutral pH. In the absence of PP, competitive oxidation of Fe(II) and As(III) leads to Mn oxide surface passivation by Fe(III) and Mn(II/III) (oxyhydr)oxides, thus inhibiting As(III) oxidation. Addition of PP to the system highly enhances As(III) oxidation by birnessite even in the presence of Fe(II). PP presence prevents passivation of Mn oxide surfaces keeping As and Fe species in solution while lower valence Mn species are released to solution. In addition, reactive oxygen species (ROS), tentatively identified as hydroxyl radicals (•OH), are generated under aerobic conditions through oxygen activation by Fe(II)-PP complexes, enhancing As(III) oxidation further. The positive influence of Mn(III) chelating agents on As(III) oxidation most likely not only depend on their affinity for Mn(III) but also on their ability to promote formation of these active radical species. Finally, removal of As(V) through sorption to Fe (oxyhydr)oxides is efficient even in the presence of significant concentrations of PP, and addition of such Mn(III) chelating agents thus appears as an efficient way to enhance the oxidizing activity of birnessite in large-scale treatment for arsenic detoxification of groundwaters.


Assuntos
Arsênio , Arsenitos , Água Subterrânea , Ferro/química , Óxidos/química , Oxirredução , Compostos de Manganês/química , Arsênio/química , Água Subterrânea/química , Quelantes , Compostos Ferrosos , Adsorção
2.
Water Res ; 187: 116420, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32977187

RESUMO

Manganese(IV) oxides, and more especially birnessite, rank among the most efficient metal oxides for As(III) oxidation and subsequent sorption, and thus for arsenic immobilization. Efficiency is limited however by the precipitation of low valence Mn (hydr)oxides at the birnessite surface that leads to its passivation. The present work investigates experimentally the influence of chelating agents on this oxidative process. Specifically, the influence of sodium pyrophosphate (PP), an efficient Mn(III) chelating agent, on As(III) oxidation by birnessite was investigated using batch experiments and different arsenic concentrations at circum-neutral pH. In the absence of PP, Mn(II/III) species are continuously generated during As(III) oxidation and adsorbed to the mineral surface. Field emission-scanning electron microscopy, synchrotron-based X-ray diffraction and Fourier transform infrared spectroscopy indicate that manganite is formed, passivating birnessite surface and thus hampering the oxidative process. In the presence of PP, generated Mn(II/III) species form soluble complexes, thus inhibiting surface passivation and promoting As(III) conversion to As(V) with PP. Enhancement of As(III) oxidation by Mn oxides strongly depends on the affinity of the chelating agent for Mn(III) and from the induced stability of Mn(III) complexes. Compared to PP, the positive influence of oxalate, for example, on the oxidative process is more limited. The present study thus provides new insights into the possible optimization of arsenic removal from water using Mn oxides, and on the possible environmental control of arsenic contamination by these ubiquitous nontoxic mineral species.


Assuntos
Arsenitos , Adsorção , Difosfatos , Compostos de Manganês , Oxirredução , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...