Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 340: 125635, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34339998

RESUMO

This study aims to construct a high-temperature-resistant microbial consortium to effectively degrade oily food waste by Fed-in-situ biological reduction treatment (FBRT). Oil degrading bacteria were screened under thermophilic conditions of mineral salt medium with increased oil content. The oil degradation and emulsification ability of each stain was evaluated and their synergetic improvement was further confirmed. Consortium of Bacillus tequilensis, Bacillus licheniformis, Bacillus sonorensis and Ureibacillus thermosphaericus was selected and applicated as bacterial agents in FBRT under 55 °C. Changes in pH, moisture, bacterial community and key components of food waste were monitored for 5 days during processing. Facilitated by the bacterial consortium, FBRT gave superior total mass reduction (86.61 ± 0.58% vs. 67.25 ± 1.63%) and non-volatile solids reduction (65.91 ± 1.53% vs. 28.53 ± 2.29%) compared with negative control, the feasibility and efficiency of present FBRT providing a promising in-situ disposal strategy for rapid reduction of oily food waste.


Assuntos
Consórcios Microbianos , Eliminação de Resíduos , Bacillus , Biodegradação Ambiental , Alimentos , Planococáceas , Temperatura
2.
Bioresour Technol ; 321: 124451, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33276208

RESUMO

This study aims to screen high-degradability strains and develop a novel microbial agent for efficient food waste degradation. The effects of the novel microbial agent on organic matter degradation, enzyme activity, and bacterial succession during the in-situ reduction of food waste were evaluated and compared with other two microbial agents previously developed. Results showed that the novel agent containing four Bacillus strains received maximum organic degradation rates, volatile solid removal (46.91%) and total mass reduction (76.16%). Pyrosequencing analysis revealed that there was a significant difference in the microbial community structure of the matrix among the three biodegradation systems, and the novel agent greatly improved the stability of in-situ reduction process that Bacillus was the dominant genus (>98%) since day 4. These results indicated that the inoculant containing only Bacillus was more stable and cost-effective in FW in-situ reduction.


Assuntos
Bacillus , Microbiota , Eliminação de Resíduos , Biodegradação Ambiental , Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...