Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 23(10): e2300111, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37222304

RESUMO

The dura mater is the final barrier against cerebrospinal fluid leakage and plays a crucial role in protecting and supporting the brain and spinal cord. Head trauma, tumor resection and other traumas damage it, requiring artificial dura mater for repair.  However, surgical tears are often unavoidable. To address these issues, the ideal artificial dura mater should have biocompatibility, anti-leakage, and self-healing properties. Herein, this work has used biocompatible polycaprolactone diol as the soft segment and introduced dynamic disulfide bonds into the hard segment, achieving a multifunctional polyurethane (LSPU-2), which integrated the above mentioned properties required in surgery. In particular, LSPU-2 matches the mechanical properties of the dura mater and the biocompatibility tests with neuronal cells demonstrate extremely low cytotoxicity and do not cause any negative skin lesions. In addition, the anti-leakage properties of the LSPU-2 are confirmed by the water permeability tester and the 900 mm H2 O static pressure test with artificial cerebrospinal fluid. Due to the disulfide bond exchange and molecular chain mobility, LSPU-2 could be completely self-healed within 115 min at human body temperature. Thus, LSPU-2 comprises one of the most promising potential artificial dura materials, which is essential for the advancement of artificial dura mater and brain surgery.

2.
Macromol Rapid Commun ; 44(3): e2200650, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36350231

RESUMO

Shape memory polymers have great potential in the fields of soft robotics, injectable medical devices, and as essential materials for advanced electronic devices. Herein, light-triggered shape-memory thermoplastic polyurethane (TPU) is reported using azido TPU grafted by the photoswitchable azo compound. The trans-cis transitions of the azobenzene on the side chain of the TPU induce the recoiling of the main chain, leading to shaping memory behavior. Under UV irradiation, cis-azo allows the oriented main chain to recoil to release residual stress and realize light-triggered shape memory behavior. The facile method proposed here for the preparation of azo-functionalized TPU can provide viable opportunities for soft robotics and smart TPU applications.


Assuntos
Robótica , Materiais Inteligentes , Poliuretanos/química , Raios Ultravioleta
3.
Nat Commun ; 13(1): 7699, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36509757

RESUMO

The self-healing properties and ionic sensing capabilities of the human skin offer inspiring groundwork for the designs of stretchable iontronic skins. However, from electronic to ionic mechanosensitive skins, simultaneously achieving autonomously superior self-healing properties, superior elasticity, and effective control of ion dynamics in a homogeneous system is rarely feasible. Here, we report a Cl-functionalized iontronic pressure sensitive material (CLiPS), designed via the introduction of Cl-functionalized groups into a polyurethane matrix, which realizes an ultrafast, autonomous self-healing speed (4.3 µm/min), high self-healing efficiency (91% within 60 min), and mechanosensitive piezo-ionic dynamics. This strategy promotes both an excellent elastic recovery (100%) and effective control of ion dynamics because the Cl groups trap the ions in the system via ion-dipole interactions, resulting in excellent pressure sensitivity (7.36 kPa-1) for tactile sensors. The skin-like sensor responds to pressure variations, demonstrating its potential for touch modulation in future wearable electronics and human-machine interfaces.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Íons , Pele , Poliuretanos , Eletrônica
4.
J Hazard Mater ; 430: 128392, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35152100

RESUMO

The popularization and widespread use of degradable polymers is hindered by their poor mechanical properties. It is of great importance to find a balance between degradation and mechanical properties. Herein, poly(butylene terephthalate) (PBT) modified by SPG diol from 10% to 40 mol% were synthesized through a two-step polycondensation reaction. Chemical structures, thermal properties, mechanical properties, viscoelastic behavior and degradation of poly(butylene terephthalate-co-spirocyclic terephthalate) (PBST) were investigated. The SPG could toughen the copolyesters and the elongation at break of PBST20 was up to 260%. Moreover, the introduction of SPG enables to provide an acid-triggered degradable unit in the main chain. PBSTs copolymers maintain stable structures in a neutral environment, and the degradation under acid conditions will be unlocked. As tailoring the content of SPG, the degradation rate of the chain scission in response to acid stimuli will be adjusted. The acid degradation was proved to be occurred at the SPG units in the amorphous phase by DSC, XRD, GPC and 1H NMR tests. After the acid degradation, the hydrolysis rate will also be accelerated, adapting to the requirements of different degradation schedules. The plausible hydrolytic pathways and mechanisms were proposed based on Fukui function analysis and density functional theory (DFT) calculation.


Assuntos
Materiais Biocompatíveis , Poliésteres , Espectroscopia de Ressonância Magnética , Modelos Teóricos , Poliésteres/química , Polímeros/química
5.
Biomacromolecules ; 22(2): 374-385, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33356173

RESUMO

Polylactic acid (PLA) is a biodegradable thermoplastic polyester produced from natural resources. Because of its brittleness, many tougheners have been developed. However, traditional toughening methods cause either the loss of modulus and strength or the lack of degradability. In this work, we synthesized a biobased and potentially biodegradable poly(butylene 2,5-furandicarboxylate)-b-poly(ethylene glycol) (PBFEG50) copolymer to toughen PLA, with the purpose of both keeping mechanical strength and enhancing the toughness. The blend containing 5 wt % PBFEG50 exhibited about 28.5 times increase in elongation at break (5.5% vs 156.5%). At the same time, the tensile modulus even strikingly increased by 21.6% while the tensile strength was seldom deteriorated. Such a phenomenon could be explained by the stretch-induced crystallization of the BF segment and the interconnected morphology of PBFEG50 domains in PLA5. The Raman spectrum was used to identify the phase dispersion of PLA and PBFEG50 phases. As the PBFEG50 content increased, the interconnected PBFEG50 domains start to separate, but their size increases. Interestingly, tensile-induced cavitation could be clearly identified in scanning electron microscopy images, which meant that the miscibility between PLA and PBFEG50 was limited. The crystallization of PLA/PBFEG50 blends was examined by differential scanning calorimetry, and the plasticizer effect of the EG segment on the PLA matrix could be confirmed. The rheological experiment revealed decreased viscosity of PLA/PBFEG50 blends, implying the possible greener processing. Finally, potential biodegradability of these blends was proved.


Assuntos
Poliésteres , Polietilenoglicóis , Alcenos , Polímeros
6.
ACS Appl Mater Interfaces ; 12(9): 11072-11083, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32043353

RESUMO

A stretchable electronic skin (e-skin) requires a durable elastomeric matrix to serve in various conditions. Therefore, excellent and balanced properties such as elasticity, water proof capability, toughness, and self-healing are demanded. However, it is very difficult and often contradictory to optimize them at one time. Here, a polyurethane (BS-PU-3) containing a polydisperse hard segment, hydrophobic soft segment, and a dynamic disulfide bond was prepared by one-pot synthesis. Unlike the normal two-pot reaction, BS-PU-3 obtained through the one-pot method owned a higher density of self-healing points along the main chain and a faster self-healing speed, which reached 1.11 µm/min in a cut-through sample and recovered more than 93% of virgin mechanical properties in 6 h at room temperature. Moreover, a remarkable toughness of 27.5 MJ/m3 assures its durability as an e-skin matrix. Even with a 1 mm notch (half of the total width) on a standard dumbbell specimen, it could still bear the tensile strain up to 324% without any crack propagation. With polybutadiene as the soft segment, the shape, microstructure, and conductivity in BS-PU-3 and BS-PU-3-based stretchable electronics kept very stable after soaking in water for 3 days, proving the super waterproof property. An e-skin demo was constructed, and self-healing in pressure sensitivity, mechanical, and electrical properties were verified.

7.
Chem Asian J ; 12(6): 698-705, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28111934

RESUMO

Diverse innovative fabrics with specific functionalities have been developed for requirements such as self-decontamination of chemical/biological pollutants and toxic nerve agents. In this work, Zr(OH)4 -coated nylon-6,6 nanofiber mats were fabricated for the decontamination of nerve agents. Nylon-6,6 fabric was prepared via the electrospinning process, followed by coating with Zr(OH)4 , which was obtained by the hydrolysis of Zr(OBu)4 by a sol-gel reaction on nanofiber surfaces. The reaction conditions were optimized by varying the amounts of Zr(OBu)4 ,the reaction time, and the temperature of the sol-gel reaction. The composite nanofibers show high decontamination efficiency against diisopropylfluorophosphate, which is a nerve agent analogue, due to its high nucleophilicity that aids in the catalysis of the hydrolysis of the phosphonate ester bonds. Composite nanofiber mats have a large potential and can be applied in specific fields such as military and medical markets.


Assuntos
Descontaminação/métodos , Hidróxidos/química , Nanofibras/química , Agentes Neurotóxicos/química , Agentes Neurotóxicos/isolamento & purificação , Zircônio/química , Agentes Neurotóxicos/toxicidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...