Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-342713

RESUMO

A set of L-band electron spin resonance imaging (ESRI) equipment suitable for biological species was developed and an ESRI experiment model for viable skin samples was established. The mechanic process of nitroxide free radical TEMPO (2,2, 6, 6-tetramethyl-1-piperidinyloxy) penetrating through skin sample and the spin density distribution of TEMPO after it interacted with skin sample were detected by the developed ESRI method. Skin samples were extracted from mice back. The experimental samples were prepared by cutting the skin pieces into square shape of 2 x 2 cm2 and then the samples were divided into three groups by treating them with three different methods: Method A, simple treatment by simply cutting the hair; method B, 8% Na2S depilation treatment for 10 min; method C, 8% Na2S depilation and then 5% pancreatic digestion treatment for 2 hours. The liposoluble solvent DMSO (dimethyl sulfoxide) and distilled water were used as two kinds of solvent for the TEMPO liquor. The results indicated that the skin-penetration properties of TEMPO were significantly different among samples treated with different methods and the surface cornifin of skin offered remarkable resistance to TEMPO. The TEMPO liquor of water could hardly penetrate through skins, whereas about 20%-30% of the original TEMPO compounds that solved in liposoluble solvent DMSO could penetrate through the skin sample treated with method C after 16 hours of interaction. Furthermore, the penetration rate of TEMPO through the skin tissue was a strong time dependent process. The preliminary application results suggested that ESRI technique could provide an effective and applicable method for dynamically researching skin-penetration properties of some special kinds of materials such as paramagnetic compounds.


Assuntos
Animais , Camundongos , Óxidos N-Cíclicos , Farmacocinética , Dimetil Sulfóxido , Química , Espectroscopia de Ressonância de Spin Eletrônica , Métodos , Sequestradores de Radicais Livres , Farmacocinética , Piperidinas , Farmacocinética , Absorção Cutânea , Fisiologia , Fenômenos Fisiológicos da Pele , Marcadores de Spin
2.
J Magn Reson ; 175(2): 256-63, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15935712

RESUMO

A set of plate form three-dimensional magnetic gradient coils was developed and used in electron spin resonance imaging (ESRI) experiment. The coils were processed with whole copper plates instead of wound with copper wires, which made its structure so compact that it was much thinner and smaller comparing to those traditionally used in ESRI. The coil set had a pie-like appearance of which the total thickness was only 14 mm and the outer diameter was 250 mm. The efficiency of the coils could be greater than 10 mT/m/A when distance between the two side-pieces was 63 mm. A maximum gradient strength of more than 200 mT/m could be obtained with driving current of about 20 A in each dimension coil. The spatial linearity was better than 5% in all three dimensions within the available spatial linearity area of larger than a sphere of 40 mm in diameter. The stability of the gradients strength could reach the level of 10(-5). An imaging resolution of better than 1 mm could be achieved with the coil set. Some preliminary practical imaging results show that the developed gradient coil set is suitable for L-band ESRI experiment of biological samples or even in vivo small animals.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Animais , Cobre , Desenho de Equipamento , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...