Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25974588

RESUMO

We investigate experimentally the sweeping of a nonwetting fluid by a wetting one in a quasi-two-dimensional porous medium consisting of random obstacles. We focus primarily on the resulting phase distributions and the residual nonwetting phase saturation as a function of the normalized wetting fluid flow rate-the capillary number Ca-at steady state. The wetting liquid is then flowing in the medium partially saturated by immobile nonwetting liquid blobs. The decrease of the nonwetting saturation is an irreversible process that depends strongly on flow history and more specifically on the highest value of Ca reached in the past. At lower Ca values, when capillary forces are dominant, the residual steady state saturation depends significantly on the initial phase configuration. However, at higher Ca, the saturation becomes independent of the history and thus follows a master curve that converges to an asymptotic residual value. Blob sizes range over four orders of magnitude in our experimental domain, following a probability distribution function P that scales with the blob size s as P(s)∝s(-2) for blob sizes larger than the typical pore size. It also exhibits a maximum size cutoff s(max), that decreases as s(max)∝Ca(-1). To determine the flow properties, we have measured the pressure drop (B) versus the flow rate (Ca). In the ranges of low and high Ca values, the relationship between Ca and B is found to be linear, following Darcy's law (B∝Ca). In the intermediate regime, the progressive mobilization of blobs leads to a nonlinear dependence B∝Ca(0.65), due to an increase of the available flow paths.

2.
J Colloid Interface Sci ; 297(2): 738-48, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16359693

RESUMO

We study the periods that develop in the drying of capillary porous media, particularly the constant rate (CRP) and the falling rate (FRP) periods. Drying is simulated with a 3-D pore-network model that accounts for the effect of capillarity and buoyancy at the liquid-gas interface and for diffusion through the porous material and through a boundary layer over the external surface of the material. We focus on the stabilizing or destabilizing effects of gravity on the shape of the drying curve and the relative extent of the various drying periods. The extents of CRP and FRP are directly associated with various transition points of the percolation theory, such as the breakthrough point and the main liquid cluster disconnection point. Our study demonstrates that when an external diffusive layer is present, the constant rate period is longer.


Assuntos
Dessecação , Teste de Materiais , Porosidade , Difusão , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...