Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(16): 168002, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306762

RESUMO

Particle swaps can drastically accelerate dynamics in glass. The mechanism is expected to be vital for a fundamental understanding of glassy dynamics. To extract defining features, we propose a partial swap model with a fraction ϕ_{s} of swap-initiating particles, which can only swap locally with each other or with regular particles. We focus on the swap-dominating regime. At all temperatures studied, particle diffusion coefficients scale with ϕ_{s} in unexpected power laws with temperature-dependent exponents, consistent with the kinetic picture of glassy dynamics. At small ϕ_{s}, swap initiators, becoming defect particles, induce remarkably typical glassy dynamics of regular particles. This supports defect models of glass.

2.
Adv Sci (Weinh) ; 9(36): e2205522, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310387

RESUMO

Vacancy dynamics of high-density 2D colloidal crystals with a polydispersity in particle size are studied experimentally. Heterogeneity in vacancy dynamics is observed. Inert vacancies that hardly hop to other lattice sites and active vacancies that hop frequently between different lattice sites are found within the same samples. The vacancies show high probabilities of first hopping from one lattice site to another neighboring lattice site, then staying at the new site for some time, and later hopping back to the original site in the next hop. This back-returning hop probability increases monotonically with the increase in packing fraction, up to 83%. This memory effect makes the active vacancies diffuse sluggishly or even get trapped in local regions. Strain-induced vacancy motion on a distorted lattice is also observed. New glassy properties in the disordered crystals are discovered, including the dynamical heterogeneity, the presence of cooperative rearranging regions, memory effect, etc. Similarities between the colloidal disordered crystals and the high-entropy alloys (HEAs) are also discussed. Molecular dynamics simulations further support the experimental observations. These results help to understand the microscopic origin of the sluggish dynamics in materials with ordered structures but in random energy landscapes, such as high-entropy alloys.

3.
Phys Rev E ; 104(2-1): 024131, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525549

RESUMO

The specific-heat capacity c_{v} of glass formers undergoes a hysteresis when subjected to a cooling-heating cycle, with a larger c_{v} and a more pronounced hysteresis for fragile glasses than for strong ones. Here we show that these experimental features, including the unusually large magnitude of c_{v} of fragile glasses, are well reproduced by kinetic Monte Carlo and equilibrium study of a distinguishable particle lattice model incorporating a two-state picture of particle interactions. The large c_{v} in fragile glasses is caused by a dramatic transfer of probabilistic weight from high-energy particle interactions to low-energy ones as temperature decreases.

4.
Nanoscale Horiz ; 6(10): 809-818, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34350925

RESUMO

Angle-resolved polarized Raman spectroscopy (ARPRS) is widely used to determine the crystal orientations of anisotropic layered materials (ALMs), which is an essential step to study all of their anisotropic properties. However, the understanding of the ARPRS response of black phosphorous (BP) as a most widely studied ALM is still unsatisfactory. Here, we clarify two key controversies about the physical origin of the intricate ARPRS response and the determination of crystal orientations in BP. Through systematic ARPRS measurements, we show that the degree of anisotropy of the response evolves gradually and periodically with the BP thickness, eventually leading to the intricate response. Meanwhile, we find that using the Raman peak intensity ratio of the two Ag phonon modes, the crystal orientations of BP can be unambiguously distinguished via a concise inequality . Comprehensive analysis and first-principles calculations reveal that the external anisotropic interference effect and the intrinsic electron-phonon coupling are responsible for the observations.

5.
Phys Rev Lett ; 124(9): 095501, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202859

RESUMO

Volume and enthalpy relaxation of glasses after a sudden temperature change has been extensively studied since Kovacs' seminal work. One observes an asymmetric approach to equilibrium upon cooling versus heating and, more counterintuitively, the expansion gap paradox, i.e., a dependence on the initial temperature of the effective relaxation time even close to equilibrium when heating. Here, we show that a distinguishable-particle lattice model can capture both the asymmetry and the paradox. We quantitatively characterize the energetic states of the particle configurations using a physical realization of the fictive temperature called the structural temperature, which, in the heating case, displays a strong spatial heterogeneity. The system relaxes by nucleation and expansion of warmer mobile domains having attained the final temperature, against cooler immobile domains maintained at the initial temperature. A small population of these cooler regions persists close to equilibrium, thus explaining the paradox.

6.
Phys Rev Lett ; 125(25): 258001, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416386

RESUMO

Particle dynamics in supercooled liquids are often dominated by stringlike motions in which lines of particles perform activated hops cooperatively. The structural features triggering these motions, crucial in understanding glassy dynamics, remain highly controversial. We experimentally study microscopic particle dynamics in colloidal glass formers at high packing fractions. With a small polydispersity leading to glass-crystal coexistence, a void in the form of a vacancy in the crystal can diffuse reversibly into the glass and further induces stringlike motions. In the glass, a void takes the form of a quasivoid consisting of a few neighboring free volumes and is transported by the stringlike motions it induces. In fully glassy systems with a large polydispersity, similar quasivoid actions are observed. The mobile particles cluster into stringlike or compact geometries, but the compact ones can be further broken down into connected sequences of strings, establishing their general importance.

7.
Phys Chem Chem Phys ; 20(32): 21105-21112, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30074597

RESUMO

We investigate the electronic and transport properties of vanadium-doped zigzag blue phosphorus nanoribbons by first-principles quantum transport calculations. We study the spin-dependent transport properties and obtain current-voltage curves showing obvious spin polarization and negative differential behaviors. These interesting transport behaviors can be explained by the band structure of the vanadium-doped zigzag blue phosphorus nanoribbons. The tunnel magnetoresistance and spin-filtering effects under different magnetic configurations originate predominately from the symmetry matching between the band structures of the electrodes. According to our results, vanadium-doped zigzag blue phosphorus nanoribbons can be used as a perfect spin filter with a large tunnel magnetoresistance. This also indicates that blue phosphorus nanoribbons are a promising candidate for their future application in spintronics.

8.
Phys Chem Chem Phys ; 20(11): 7635-7642, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29497734

RESUMO

We investigate the electronic and magnetic properties of substitutional metal atom impurities in two-dimensional (2D) blue phosphorene nanoribbons using first-principles calculations. In impure zigzag blue phosphorene nanoribbons (zBPNRs), a metal atom substitutes for a P atom at position "A/B". The V-"B"structure shows half-metallic properties, while the Mn-"A/B", V-"A", Fe-"B", and Cr-"A/B" structures show magnetic semiconductor properties. In addition, the Fe-"A" system shows magnetic metallic properties. On the other hand, for metal-doped armchair blue phosphorene nanoribbons (aBPNRs), the Mn-"A/B", V-"A", Fe-"A/B", and Cr-"A/B" structures show magnetic semiconductor properties, while the V-"B" structure shows nonmagnetic properties. We find that the magnetic properties of such substitutional impurities can be understood by regarding the exchange splitting of the metal 3d orbitals. And from analyzing the electron orbitals, we conclude that the main contribution of the DOS for every system comes from the d and p orbitals. These results suggest excellent candidates for new magnetic semiconductors and half-metals for spintronic devices based on blue phosphorenes.

9.
Nanoscale ; 4(2): 448-50, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22159643

RESUMO

We demonstrate a simple method to fabricate open-ended TiO(2) nanotube (NT) based dye-sensitized solar cells (DSSCs), where the NTs are attached to either TiO(2) nanorods (NRs) grown on fluorine-doped tin oxide (FTO) or FTO directly by nanoparticles (NPs). A completely hole-through TiO(2) NT layer is fabricated via a two-step anodization with heat treatment immediately after the first anodization. DSSCs with the open-ended NTs show better photovoltaic performance than those with close-ended NTs, due to the enhanced charge transport in the open-ended structure. Under optimum conditions, DSSCs fabricated with the open-ended NT layer exhibit a short circuit current density (J(sc)) of 19.10 mA cm(-2), an open circuit voltage (V(oc)) of 0.68 V, a fill factor (FF) of 0.49, and a power conversion efficiency (eff) of 6.3%.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Nanotecnologia/instrumentação , Nanotubos/química , Nanotubos/ultraestrutura , Energia Solar , Titânio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
10.
Adv Mater ; 23(47): 5624-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22102221

RESUMO

A TiO(2) nanotube layer with a periodic structure is used as a photonic crystal to greatly enhance light harvesting in TiO(2) nanotube-based dye-sensitized solar cells. Such a tube-on-tube structure fabricated by a single-step approach facilitates good physical contact, easy electrolyte infiltration, and efficient charge transport. An increase of over 50% in power conversion efficiency is obtained in comparison to reference cells without a photonic crystal layer (under similar total thickness and dye loading).


Assuntos
Corantes/química , Fontes de Energia Elétrica , Nanotubos/química , Fotoquímica/métodos , Energia Solar , Titânio/química , Técnicas Eletroquímicas/métodos , Eletrodos , Eletrólitos , Tamanho da Partícula , Propriedades de Superfície
11.
J Am Chem Soc ; 129(46): 14372-80, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17967015

RESUMO

The synthesis, characterization, and photophysics of a series of solution-processable and strongly visible-light absorbing platinum(II) polyynes containing bithiazole-oligo(thienyl) rings were presented. Tuning the polymer solar cell efficiency, as well as optical and charge transport properties, in soluble, low-band gap PtII-based conjugated poly(heteroaryleneethynylene)s using the number of oligothienyl rings is described. These materials are highly soluble in polar organic solvents due to the presence of solubilizing bithiazole moieties and show strong absorptions in the solar spectra, rendering them excellent candidates for bulk heterojunction polymer solar cells. Their photovoltaic responses and power conversion efficiencies (PCEs) depend to a large extent on the number of thienyl rings along the main chain, and some of them can be used to fabricate highly efficient solar cells with PCEs of up to 2.7% and a peak external quantum efficiency to 83% under AM1.5 simulated solar illumination, which is comparable to that of poly(3-hexylthiophene)-based devices fabricated without additional processing (annealing or TiO(x) layer). The influence of the number of thienyl rings and the metal group on the performance parameters and optimization of solar cell efficiency was evaluated and discussed in detail. At the same blend ratio of 1:4, the light-harvesting ability and PCE increase sharply as the thienyl chain length increases. The present work provides an attractive approach to developing conjugated metallopolymers offering broad solar absorptions and tunable solar cell efficiency and demonstrates the potential of metalated conjugated polymers for efficient power generation.

12.
Nat Mater ; 6(7): 521-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17496897

RESUMO

Bulk heterojunction solar cells have been extensively studied owing to their great potential for cost-effective photovoltaic devices. Although recent advances resulted in the fabrication of poly(3-hexylthiophene) (P3HT)/fullerene derivative based solar cells with efficiencies in the range 4.4-5.0%, theoretical calculations predict that the development of novel donor materials with a lower bandgap is required to exceed the power-conversion efficiency of 10%. However, all of the lower bandgap polymers developed so far have failed to reach the efficiency of P3HT-based cells. To address this issue, we synthesized a soluble, intensely coloured platinum metallopolyyne with a low bandgap of 1.85 eV. The solar cells, containing metallopolyyne/fullerene derivative blends as the photoactive material, showed a power-conversion efficiency with an average of 4.1%, without annealing or the use of spacer layers needed to achieve comparable efficiency with P3HT. This clearly demonstrates the potential of metallated conjugated polymers for efficient photovoltaic devices.

13.
Chemistry ; 13(1): 328-35, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17013959

RESUMO

Multilayer thin films were prepared by the layer-by-layer (LBL) deposition method using a rhenium-containing hyperbranched polymer and poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (PTEBS). The radii of gyration of the hyperbranched polymer in solutions with different salt concentrations were measured by laser light scattering. A significant decrease in molecular size was observed when sodium trifluoromethanesulfonate was used as the electrolyte. The conditions of preparing the multilayer thin films by LBL deposition were studied. The growth of the multilayer films was monitored by absorption spectroscopy and spectroscopic ellipsometry, and the surface morphologies of the resulting films were studied by atomic force microscopy. When the pH of a PTEBS solution was kept at 6 and in the presence of salt, polymer films with maximum thickness were obtained. The multilayer films were also fabricated into photovoltaic cells and their photocurrent responses were measured upon irradiation with simulated air mass (AM) 1.5 solar light. The open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency of the devices were 1.2 V, 27.1 mu A cm(-2), 0.19, and 6.1x10(-3) %, respectively. The high open-circuit voltage was attributed to the difference in the HOMO level of the PTEBS donor and the LUMO level of the hyperbranched polymer acceptor. A plot of incident photon-to-electron conversion efficiency versus wavelength also suggests that the PTEBS/hyperbranched polymer junction is involved in the photosensitization process, in which a maximum was observed at approximately 420 nm. The relatively high capacitance, determined from the measured photocurrent rise and decay profiles, can be attributed to the presence of large counter anions in the polymer film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...