Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1039620

RESUMO

ObjectiveTo explore the effect and mechanism of Hei Xiaoyaosan in regulating the tumor necrosis factor receptor superfamily member 6 (Fas)/Fas ligand (FasL)/cysteine protease-8 (Caspase-8)/cysteine protease-3 (Caspase-3) signaling pathway to intervene in neuronal apoptosis and prevent Alzheimer's disease (AD). MethodNinety SPF-grade SD male rats of 4 months old were selected and randomly grouped as follows: 10 rats in the blank group, 10 rats in the sham group (bilateral hippocampus injected with 1 μL normal saline), and 70 rats in the modeling group [bilater hippocampus injected with 1 μL amyloid-beta protein 1-42 (Aβ1-42) solution for the modeling of AD]. Fifty successfully modeled rats were selected and randomly assigned into model, donepezil hydrochloride (0.45 mg·kg-1), and high-, medium-, and low-dose (15.30, 7.65, 3.82 g·kg-1) Hei Xiaoyaosan groups. Rats were administrated with corresponding agents by gavage once a day for 42 days. Terminal-deoxynucleoitidyl transferase-mediated nick end labeling (TUNEL) was employed to observe the apoptosis of neurons in the cortex and hippocampus, and immunohistochemistry (IHC) was used to detect the expression of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) in the hippocampus. Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was employed to determine the mRNA levels of Fas, FasL, and Fas-associated protein with death domain (Fadd). Western blot was used to determine the protein levels of Fas, FasL, Fadd, Caspase-3, cleved Caspase-3, Caspase-8, and cleved Caspase-8. ResultCompared with the blank group and sham group, the model group showed increased apoptosis rate in the cortex and hippocampus (P<0.01), elevated Bax level (P<0.01), lowered Bcl-2 level (P<0.01), up-regulated mRNA levels of Fas, FasL, and Fadd in the hippocampus (P<0.01), and up-regulated protein levels of Fas, FasL, Fadd, cleaved Caspase-3, and cleaved Caspase-8 (P<0.01). Compared with the model group, donepezil hydrochloride and Hei Xiaoyaosan at high and medium doses decreased the apoptosis rate in the cortex and hippocampus (P<0.05, P<0.01), lowered the Bax level (P<0.01), elevated the Bcl-2 level (P<0.01), and down-regulated the mRNA levels of Fas, FasL, and Fadd and the protein levels of Fas, FasL, Fadd, cleaved Caspase-3, and cleaved Caspase-8 (P<0.05, P<0.01) in the hippocampus. Low-dose Hei Xiaoyaosan decreased the apoptosis rate in the cortex and hippocampus (P<0.05, P<0.01), lowered the Bcl-2 level (P<0.01), and down-regulated the mRNA levels of FasL and Fadd (P<0.05) and the protein levels of Fas, FasL, Fadd, cleaved Caspase-3, and cleaved Caspase-8 (P<0.05) in the hippocampus. ConclusionHei Xiaoyaosan can protect neurons in the cortex and hippocampus of AD rats by inhibiting the apoptosis mediated by the Fas/FasL/Caspase-8/Caspase-3 signaling pathway.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1039621

RESUMO

ObjectiveTo explore the effect and mechanism of Hei Xiaoyaosan in modulating the synaptic plasticity in APP/PS1 mice by regulating the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/N-methyl-D-aspartate receptor (NMDAR) signaling pathway. MethodTwelve 4-month-old male C57BL/6J mice were selected as the blank control group, and 60 4-month-old male APP/PS1 double transgenic mice were randomized into model, KW-6002 (adenosine receptor antagonist, 3 mg·kg-1), and high-, medium-, and low-dose (22.10, 11.05, 5.53 g·kg-1, respectively) Hei Xiaoyaosan groups, with 12 mice in each group. Mice were administrated with corresponding drugs for 90 days. Transmission electron microscopy was employed to observe the synaptic ultrastructure of hippocampal neurons, and Golgi staining was used to observe the dendritic spine density of neurons in hippocampal CA1 region. Western blot was employed to measure the protein levels of cAMP, PKA, N-methyl-D-aspartate receptors 1, 2A, and 2B (NR1, NR2A, and NR2B, respectively), postsynaptic density protein 95 (PSD95), and synapsin 1 (SYN1). Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was performed to determine the mRNA levels of cAMP, PKA, and NR1. Enzyme-linked immunosorbent assay was employed to determine the content of interleukin-12 (IL-12) and interleukin-4 (IL-4) in the hippocampus. ResultCompared with the blank group, the model group showed blurred boundaries between presynaptic membrane and postsynaptic membrane in hippocampal CA1 region, reduced and scattered synaptic vesicles, and decreased density of postsynaptic membrane, and irregular, disarranged, and loosened dendritic spines of neurons in hippocampal CA1 region (P<0.01). In addition, the model group presented down-regulated protein levels of cAMP, PKA, NR1, NR2A, NR2B, PSD95, and SYN1 and mRNA levels of cAMP, PKA, and NR1, elevated IL-12 level, and lowered IL-4 level in the hippocampus (P<0.01). Compared with the model group, the drug intervention groups showed clear and intact boundaries between presynaptic membrane and postsynaptic membrane in hippocampal CA1 region, increased synaptic vesicles with dense arrangement, increased density of postsynaptic membrane, and improved morphology, arrangement, and density of neuronal dendritic spines (P<0.05, P<0.01). In addition, the drug interventions up-regulated the protein levels of cAMP, PKA, NR1, NR2A, NR2B, PSD95, and SYN1 (P<0.05,P<0.01) and mRNA levels of cAMP, PKA, and NR1 (P<0.01), lowered the IL-12 level (P<0.01), and elevated the IL-4 level (P<0.01) in the hippocampus. ConclusionHei Xiaoyaosan can improve the structure and morphology of hippocampal neurons in APP/PS1 mice by activating the cAMP/PKA/NMDAR signaling pathway and repairing synaptic plasticity.

3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1039622

RESUMO

ObjectiveTo investigate the role and mechanism of Hei Xiaoyaosan in intervening in oxidative stress in the rat model of Alzheimer's disease (AD) via modulating the rat sarcoma (RAS)/rapidly accelerating fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway. MethodOne hundred 4-month-old SPF-grade Wistar male rats were randomly grouped as follows: 10 in the blank group, 10 in the sham group (bilateral hippocampus injected with 1 μL normal saline), and 80 in the modeling group [bilateral hippocampus injected with 1 μL amyloid beta protein 1-42 (Aβ1-42) solution for the modeling of AD]. Fifty rats qualified for modeling were selected and randomized into the model, donepezil hydrochloride (0.5 mg·kg-1), and high-, medium-, and low-dose (15.30, 7.65, 3.82 g·kg-1, respectively) Hei Xiaoyaosan groups. The rats were administrated with corresponding drugs by gavage once a day for 42 consecutive days. At the end of gavage, Morris water maze test was performed to examine the learning and memory abilities of the rats, and Nissl staining was used to observe the pathological changes of neurons in CA3 region of the hippocampus. The immunofluorescence assay was used to observe Aβ deposition and tau phosphorylation. Western blot was employed to determine the protein levels of RAS, RAF, phosphorylated (p)-RAF, MEK, p-MEK, ERK, and p-ERK in the hippocampal tissue. Biochemical methods were used to determine the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) in the hippocampal tissue. ResultCompared with the sham group, the model group showed prolonged escape latency (P<0.01), shortened swimming distance in the target quadrant (P<0.01), reduced and uneven stained Nissl bodies, enhanced fluorescence intensity of Aβ and p-tau (P<0.01), up-regulated protein levels of RAS, p-RAF, p-MEK, and p-ERK in the hippocampal tissue (P<0.01), increased ROS and MDA content (P<0.01), and decreased SOD activity (P<0.01) on day 5. Compared with the model group, donepezil hydrochloride and high-, medium-, and low-dose Hei Xiaoyaosan shortened the escape latency (P<0.01), increased the swimming distance in the target quadrant (P<0.01), improved the arrangement, morphology, and structures of neurons and the number and distribution of Nissl bodies, decreased the fluorescence intensity of Aβ and p-tau (P<0.01), up-regulated the protein levels of RAS, p-RAF, p-MEK, and p-ERK (P<0.05, P<0.01), decreased the ROS and MDA content (P<0.01), and increased the SOD activity (P<0.01) on day 5. ConclusionHei Xiaoyaosan may ameliorate oxidative stress, reduce Aβ and p-tau levels, and inhibit hippocampal neuronal damage by regulating the RAS/RAF/MEK/ERK signaling pathway, thus improving learning and memory abilities.

4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1039623

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that predominantly affects the elderly. It belongs to the category of dementia in traditional Chinese medicine (TCM), with the onset and progression closely associated with the functions of the kidney, liver, and spleen. The classic TCM formula Hei Xiaoyaosan, which regulates the three Yin of liver, spleen, and kidney, shows broad prospects in treating neurodegenerative diseases. This article reviews the experimental studies reported in the past decade to summarize the mechanisms of Hei Xiaoyaosan and its active components in intervening in AD. Hei Xiaoyaosan can treat AD via multiple targets, levels, and aspects comprehensively. The clinical studies have demonstrated that Hei Xiaoyaosan alone or in combination with other therapies has a definite therapeutic effect on AD. Specifically, it can ameliorate the cognitive impairment, mitigate oxidative stress, and inhibit the overexpression of soluble apoptotic factors in AD patients. This review aims to provide a theoretical basis for the treatment of AD with Hei Xiaoyaosan and explore new research directions. Moreover, it gives new insights into the clinical application of Hei Xiaoyaosan and the development of products with both medicinal and edible values.

5.
Toxicol Lett ; 356: 11-20, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871762

RESUMO

Information on the effects of copper on reproduction is limited. Our previous study indicated that copper induces abnormal steroidogenesis in human ovarian granulosa cells, but the underlying mechanism remains unclear. In this study, human ovarian granulosa cells were treated with multiple concentrations of copper for 24 h. After treatment, the 17-estradiol levels were significantly increased (29.83 % and 45.12 %, respectively) in the 1.0 and 2.0 µg/mL groups but decreased (23.06 % and 31.56 %, respectively) in the 20.0 and 40.0 µg/mL groups (P < 0.05). Similar changes in the levels of FSHR, StAR, CYP11A1, CYP19A1, HSD3ß1, and SF-1 were observed. The protein levels of FSHR were increased in the 2.0 µg/mL group but decreased in the 20.0 and 40.0 µg/mL groups (P < 0.05). Moreover, copper partially reversed the FSH-induced increase in FSHR, CYP19A1 and 17-estradiol levels, and the decreased effect of the FSH receptor binding inhibitor fragment on FSHR, CYP19A1, and 17-estradiol became more apparent after adding copper. Additionally, the total methylation levels of the SF-1 promoter and DNMTs expression were significantly decreased following copper treatment. Overall, our results indicate that copper exposure induces steroidogenesis disorders via the FSHR/CYP19A1 pathway and changes DNA methylation on the SF-1 promoter in human ovarian granulosa cells.


Assuntos
Aromatase/metabolismo , Cobre/toxicidade , Células da Granulosa/efeitos dos fármacos , Receptores do FSH/metabolismo , Fator Esteroidogênico 1/metabolismo , Aromatase/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Regiões Promotoras Genéticas , Receptores do FSH/genética , Fator Esteroidogênico 1/genética
6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-960521

RESUMO

Background Arsenic is recognized as a kind of developmental toxicant, which can pass through the placenta barrier and induce health defects in offspring. However, the effects of environmental levels of arsenic exposure during gestation on the reproductive system of adult male offspring remain unclear. Objective To investigate the impact of environmental levels of arsenic exposure during gestation on testosterone synthesis and sperm quality in F1 adult male rats. Methods Forty sexually mature Wistar female rats were randomly divided into four groups according to body weight, namely control group, low-dose sodium arsenite (NaAsO2) group, middle-dose NaAsO2 group, and high-dose NaAsO2 group. They were mated with sexually mature Wistar male rats in a ratio of 2:1, and the day with presence of a vaginal plug or spermatozoa in the vaginal smear was designated as gestational day 0 (GD0). Pregnant rats were provided drinking water containing 0, 1, 5,, or 25 mg·L−1 NaAsO2 until delivery. At postnatal day 70, the F1 male rats were euthanized. Anogenital distance was measured, testis and epididymis were weighed, and associated organ coefficients were calculated. Epididymal sperm quality was evaluated. The histological changes of testis were observed. The levels of testosterone and estradiol in serum were determined with ELISA kit. The testicular mRNA relative expression levels of key steroidogenic enzymes were determined by quantitative real-time PCR. The protein relative expression levels of key steroidogenic enzymes were determined by Western blotting. Results Compared with the control group, the testicular coefficients and epididymis coefficients were increased in the low- and middle-dose groups (P<0.05), and the epididymis coefficient was also increased in the high-dose group (P<0.05). As for the percentage of sperm motility, compared to the control group, grade Ⅰ sperm cells were increased in the low-dose group, but significantly decreased in the middle- and high-dose groups; grade Ⅱ and Ⅲ sperm cells were decreased in the low- and high-dose groups; grade Ⅳ sperm cells were significantly increased in the middle- and high-dose groups; all the differences above were statistically significant (P<0.05). Compared with the control group, there was a significant increase in serum testosterone levels in all treated groups (P<0.05), and the serum estradiol levels were significantly decreased in the high-dose group (P<0.05). Meanwhile, compared with the control group, the relative mRNA expression levels of Hsd3β1 and Cyp19a1 were decreased (P<0.05), while those of StAR and Cyp11a1 were increased in the high-dose group (P<0.05). In addition, the relative protein expression levels of CYP11A1 were significantly increased in all treated groups compared with the control group (P<0.05). Conclusion Environmental levels of arsenic exposure during gestation can up-regulate testosterone level and reduce sperm quality, and is a potential risk for reproductive dysfunction in adult male offspring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...