Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(51): 16172-16182, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36524704

RESUMO

Silicone-polyether (SPE) surfactants, made of a polydimethyl-siloxane (PDMS) backbone and polyether branches, are commonly used as additives in the production of polymeric foams with improved properties. A key step in the production of polymeric foams is the nucleation of gas bubbles in the polymer matrix upon supersaturation of dissolved gas. However, the role of SPE surfactants in the nucleation of gas bubbles is not well understood. In this study, we use classical density functional theory to investigate the effect of an SPE surfactant on the nucleation of CO2 bubbles in a polyol foam formulation. We find that the addition of an SPE surfactant leads to a ∼3-fold decrease in the polyol-CO2 interfacial tension at the surfactant's critical micelle concentration. Additionally, the surfactant is found to reduce the free energy barrier and affect the minimum free energy pathway (MFEP) associated with CO2 bubble nucleation. In the absence of a surfactant, a CO2-rich bubble nucleates from a homogeneous CO2-supersaturated polyol solution by following an MFEP characterized by a single nucleation barrier. Adding a surfactant results in a two-step nucleation process with reduced free energy barriers. The first barrier corresponds to the formation of a spherical aggregate with a liquid-like CO2 core. This spherical aggregate then grows into a CO2-rich bubble (spherical aggregate with a vapor-like CO2 core) of a critical size representing the second barrier. We hypothesize that the stronger affinity of CO2 for PDMS (than polyether) stabilizes the spherical aggregate with the liquid-like CO2 core, leading to a lower free energy barrier for CO2 bubble nucleation. Stabilization of such an aggregate during the early stages of the nucleation may lead to foams with more, smaller bubbles, which can improve their microstrustural features and insulating abilities.

2.
Ind Eng Chem Res ; 61(34): 12835-12844, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36065446

RESUMO

In carbon dioxide-blown polymer foams, the solubility of carbon dioxide (CO2) in the polymer profoundly shapes the structure and, consequently, the physical properties of the foam. One such foam is polyurethane-commonly used for thermal insulation, acoustic insulation, and cushioning-which increasingly relies on CO2 to replace environmentally harmful blowing agents. Polyurethane is produced through the reaction of isocyanate and polyol, of which the polyol has the higher capacity for dissolving CO2. While previous studies have suggested the importance of the effect of hydroxyl end groups on CO2 solubility in short polyols (<1000 g/mol), their effect in polyols with higher molecular weight (≥1000 g/mol) and higher functionality (>2 hydroxyls per chain)-as are commonly used in polyurethane foams-has not been reported. Here, we show that the solubility of CO2 in polyether polyols decreases with molecular weight above 1000 g/mol and decreases with functionality using measurements performed by gravimetry-axisymmetric drop-shape analysis. The nonmonotonic effect of molecular weight on CO2 solubility results from the competition between effects that reduce CO2 solubility (lower mixing entropy) and effects that increase CO2 solubility (lower ratio of hydroxyl end groups to ether backbone groups). To generalize our measurements, we modeled the CO2 solubility using a perturbed chain-statistical associating fluid theory (PC-SAFT) model, which we validated by showing that a density functional theory model based on the PC-SAFT free energy accurately predicted the interfacial tension.

3.
Polymers (Basel) ; 13(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072208

RESUMO

In situ synchrotron X-ray scattering was used to reveal the transient microstructure of poly(L-lactide) (PLLA)/tungsten disulfide inorganic nanotubes (WS2NTs) nanocomposites. This microstructure is formed during the blow molding process ("tube expansion") of an extruded polymer tube, an important step in the manufacturing of PLLA-based bioresorbable vascular scaffolds (BVS). A fundamental understanding of how such a microstructure develops during processing is relevant to two unmet needs in PLLA-based BVS: increasing strength to enable thinner devices and improving radiopacity to enable imaging during implantation. Here, we focus on how the flow generated during tube expansion affects the orientation of the WS2NTs and the formation of polymer crystals by comparing neat PLLA and nanocomposite tubes under different expansion conditions. Surprisingly, the WS2NTs remain oriented along the extrusion direction despite significant strain in the transverse direction while the PLLA crystals (c-axis) form along the circumferential direction of the tube. Although WS2NTs promote the nucleation of PLLA crystals in nanocomposite tubes, crystallization proceeds with largely the same orientation as in neat PLLA tubes. We suggest that the reason for the unusual independence of the orientations of the nanotubes and polymer crystals stems from the favorable interaction between PLLA and WS2NTs. This favorable interaction leads WS2NTs to disperse well in PLLA and strongly orient along the axis of the PLLA tube during extrusion. As a consequence, the nanotubes are aligned orthogonally to the circumferential stretching direction, which appears to decouple the orientations of PLLA crystals and WS2NTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...