Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2022: 2735414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251185

RESUMO

Human myogenic progenitors can be derived from pluripotent stem cells (PSCs) for use in modeling natural and pathological myogenesis, as well as treating muscle diseases. Transgene-free methods of deriving myogenic progenitors from different PSC lines often produce mixed populations that are heterogeneous in myogenic differentiation potential, yet detailed and accurate characterization of human PSC-derived myogenic progenitors remains elusive in the field. The isolation and purification of human PSC-derived myogenic progenitors is thus an important methodological consideration when we investigate the properties and behaviors of these cells in culture. We previously reported a transgene-free, serum-free floating sphere culture method for the derivation of myogenic progenitors from human PSCs. In this study, we first performed comprehensive cell surface protein profiling of the sphere culture cells through the screening of 255 antibodies. Next, we used magnetic activated cell sorting and enriched the cells according to the expression of specific surface markers. The ability of muscle differentiation in the resulting cells was characterized by immunofluorescent labeling and quantification of positively stained cells. Our results revealed that myotube-forming cells resided in the differentiated cultures of CD29+, CD56+, CD271+, and CD15- fractions, while thick and multinucleated myotubes were identified in the differentiated cultures from CD9+ and CD146+ fractions. We found that PAX7 localization to the nucleus correlates with myotube-forming ability in these sorted populations. We also demonstrated that cells in unsorted, CD271+, and CD15- fractions responded differently to cryopreservation and prolonged culture expansion. Lastly, we showed that CD271 expression is essential for terminal differentiation of human PSC-derived myogenic progenitors. Taken together, these cell surface proteins are not only useful markers to identify unique cellular populations in human PSC-derived myogenic progenitors but also functionally important molecules that can provide valuable insight into human myogenesis.

2.
Biochim Biophys Acta Gen Subj ; 1864(12): 129707, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32810562

RESUMO

BACKGROUND: Heparan sulfate (HS) is a sulfated linear polysaccharide on cell surfaces that plays an important role in physiological processes. HS is present in skeletal muscles but its detailed role in this tissue remains unclear. METHODS: We examined the role of HS in the differentiation of C2C12 cells, a mouse myoblast cell line. We also phenotyped the impact of HS deletion in mouse skeletal muscles on their functions by using Cre-loxP system. RESULTS: CRISPR-Cas9-dependent HS deletion or pharmacological removal of HS dramatically impaired myoblast differentiation of C2C12 cells. To confirm the importance of HS in vivo, we deleted Ext1, which encodes an enzyme essential for HS biosynthesis, specifically in the mouse skeletal muscles (referred to as mExt1CKO mice). Treadmill and wire hang tests demonstrated that mExt1CKO mice exhibited muscle weakness. The contraction of isolated soleus muscles from mExt1CKO mice was also impaired. Morphological examination of mExt1CKO muscle tissue under light and electron microscopes revealed smaller cross sectional areas and thinner myofibrils. Finally, a model of muscle regeneration following BaCl2 injection into the tibialis anterior muscle of mice demonstrated that mExt1CKO mice had reduced expression of myosin heavy chain and an increased number of centronucleated cells. This indicates that muscle regeneration after injury was attenuated in the absence of HS expression in muscle cells. SIGNIFICANCE: These results demonstrate that HS plays an important role in skeletal muscle function by promoting differentiation.


Assuntos
Heparitina Sulfato/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/fisiologia , Mioblastos/citologia , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular , Heparitina Sulfato/antagonistas & inibidores , Heparitina Sulfato/genética , Camundongos , Atividade Motora , Músculo Esquelético/citologia , Mioblastos/metabolismo
3.
Sci Rep ; 9(1): 16451, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712580

RESUMO

Histamine is an important neurotransmitter that contributes to various processes, including the sleep-wake cycle, learning, memory, and stress responses. Its actions are mediated through histamine H1-H4 receptors. Gene knockout and pharmacological studies have revealed the importance of H1 receptors in learning and memory, regulation of aggression, and wakefulness. H1 receptors are abundantly expressed on neurons and astrocytes. However, to date, studies selectively investigating the roles of neuronal and astrocytic H1 receptors in behaviour are lacking. We generated novel astrocyte- and neuron-specific conditional knockout (cKO) mice to address this gap in knowledge. cKO mice showed cell-specific reduction of H1 receptor gene expression. Behavioural assessment revealed significant changes and highlighted the importance of H1 receptors on both astrocytes and neurons. H1 receptors on both cell types played a significant role in anxiety. Astrocytic H1 receptors were involved in regulating aggressive behaviour, circadian rhythms, and quality of wakefulness, but not sleep behaviour. Our results emphasise the roles of neuronal H1 receptors in recognition memory. In conclusion, this study highlights the novel roles of H1 receptors on astrocytes and neurons in various brain functions.


Assuntos
Astrócitos/metabolismo , Comportamento Animal , Neurônios/metabolismo , Receptores Histamínicos H1/metabolismo , Animais , Biomarcadores , Deleção de Genes , Expressão Gênica , Memória , Camundongos , Camundongos Knockout , Receptores Histamínicos H1/genética , Reconhecimento Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...