Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Multimed Tools Appl ; 82(1): 1565-1583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36313483

RESUMO

COVID-19 is an ongoing pandemic and the WHO recommends at least one-meter social distance, and the use of medical face masks to slow the disease's transmission. This paper proposes an automated approach for detecting social distance and face masks. Thus, it aims to help the reduction of diseases transferred by respiratory droplets such as COVID-19. For this system, a two-cascaded YOLO is used. The first cascade detects humans in the environment and computes the social distance between them. Then, the second cascade detects human faces with or without a mask. Finally, red bounding boxes encircle the people's images that did not follow the rules. Also, in this paper, we propose a two-part feature extraction approach used with YOLO. The first part of the proposed feature extraction method extracts general features using the transfer learning approach. The second part extracts better features specific to the current task using the LBP layer and classification layers. The best average precision for the human detection task was obtained as 66% using Resnet50 in YOLO. The best average precision for the mask detection was obtained as 95% using Darknet19+LBP with YOLO. Also, another popular object detection network, Faster R-CNN, have been used for comparison purpose. The proposed system performed better than the literature in human and mask detection tasks.

2.
J Med Syst ; 46(11): 79, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36210365

RESUMO

Recently, human monkeypox outbreaks have been reported in many countries. According to the reports and studies, quick determination and isolation of infected people are essential to reduce the spread rate. This study presents an Android mobile application that uses deep learning to assist this situation. The application has been developed with Android Studio using Java programming language and Android SDK 12. Video images gathered through the mobile device's camera are dispatched to a deep convolutional neural network that runs on the same device. Camera2 API of the Android platform has been used for camera access and operations. The network then classifies images as positive or negative for monkeypox detection. The network's training has been carried out using skin lesion images of monkeypox-infected people and other skin lesion images. For this purpose, a publicly available dataset and a deep transfer learning approach have been used. All training and testing steps have been applied on Matlab using different pre-trained networks. Then, the network that has the best accuracy has been recreated and trained using TensorFlow. The TensorFlow model has been adapted to mobile devices by converting to the TensorFlow Lite model. The TensorFlow Lite model has been then embedded into the mobile application together with the TensorFlow Lite library for monkeypox detection. The application has been run on three devices successfully. During the run-time, the inference times have been gathered. 197 ms, 91 ms, and 138 ms average inference times have been observed. The presented system allows people with body lesions to quickly make a preliminary diagnosis. Thus, monkeypox-infected people can be encouraged to act rapidly to see an expert for a definitive diagnosis. According to the test results, the system can classify the images with 91.11% accuracy. In addition, the proposed mobile application can be trained for the preliminary diagnosis of other skin diseases.


Assuntos
Aprendizado Profundo , Aplicativos Móveis , Mpox , Dermatopatias , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...