Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8443, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589746

RESUMO

Black carbon aerosol emissions are recognized as contributors to global warming and air pollution. There remains, however, a lack of techniques to remotely measure black carbon aerosol particles with high range and time resolution. This article presents a direct and contact-free remote technique to estimate the black carbon aerosol number and mass concentration at a few meters from the emission source. This is done using the Colibri instrument based on a novel technique, referred to here as Picosecond Short-Range Elastic Backscatter Lidar (PSR-EBL). To address the complexity of retrieving lidar products at short measurement ranges, we apply a forward inversion method featuring radiometric lidar calibration. Our method is based on an extension of a well-established light-scattering model, the Rayleigh-Debye-Gans for Fractal-Aggregates (RDG-FA) theory, which computes an analytical expression of lidar parameters. These parameters are the backscattering cross-sections and the lidar ratio for black carbon fractal aggregates. Using a small-scale Jet A-1 kerosene pool fire, we demonstrate the ability of the technique to quantify the aerosol number and mass concentration with centimetre range-resolution and millisecond time-resolution.

2.
J Environ Sci (China) ; 113: 104-117, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34963520

RESUMO

Ultrafine particles represent a growing concern in the public health community but their precise role in many illnesses is still unknown. This lack of knowledge is related to the experimental difficulty in linking their biological effects to their multiple properties, which are important determinants of toxicity. Our aim is to propose an interdisciplinary approach to study fine (FP) and ultrafine (UFP) particles, generated in a controlled manner using a miniCAST (Combustion Aerosol Standard) soot generator used with two different operating conditions (CAST1 and CAST3). The chemical characterization was performed by an untargeted analysis using ultra-high resolution mass spectrometry. In conjunction with this approach, subsequent analysis by gas chromatography-mass spectrometry (GC-MS) was performed to identify polycyclic aromatic hydrocarbons (PAH). CAST1 enabled the generation of FP with a predominance of small PAH molecules, and CAST3 enabled the generation of UFP, which presented higher numbers of carbon atoms corresponding to larger PAH molecules. Healthy normal human bronchial epithelial (NHBE) cells differentiated at the air-liquid interface (ALI) were directly exposed to these freshly emitted FP and UFP. Expression of MUC5AC, FOXJ1, OCLN and ZOI as well as microscopic observation confirmed the ciliated pseudostratified epithelial phenotype. Study of the mass deposition efficiency revealed a difference between the two operating conditions, probably due to the morphological differences between the two categories of particles. We demonstrated that only NHBE cells exposed to CAST3 particles induced upregulation in the gene expression of IL-8 and NQO1. This approach offers new perspectives to study FP and UFP with stable and controlled properties.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Células Epiteliais/química , Humanos , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Fuligem
3.
Toxics ; 11(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36668747

RESUMO

Gasoline emissions contain high levels of pollutants, including particulate matter (PM), which are associated with several health outcomes. Moreover, due to the depletion of fossil fuels, biofuels represent an attractive alternative, particularly second-generation biofuels (B2G) derived from lignocellulosic biomass. Unfortunately, compared to the abundant literature on diesel and gasoline emissions, relatively few studies are devoted to alternative fuels and their health effects. This study aimed to compare the adverse effects of gasoline and B2G emissions on human bronchial epithelial cells. We characterized the emissions generated by propane combustion (CAST1), gasoline Surrogate, and B2G consisting of Surrogate blended with anisole (10%) (S+10A) or ethanol (10%) (S+10E). To study the cellular effects, BEAS-2B cells were cultured at air-liquid interface for seven days and exposed to different emissions. Cell viability, oxidative stress, inflammation, and xenobiotic metabolism were measured. mRNA expression analysis was significantly modified by the Surrogate S+10A and S+10E emissions, especially CYP1A1 and CYP1B1. Inflammation markers, IL-6 and IL-8, were mainly downregulated doubtless due to the PAHs content on PM. Overall, these results demonstrated that ultrafine particles generated from biofuels Surrogates had a toxic effect at least similar to that observed with a gasoline substitute (Surrogate), involving probably different toxicity pathways.

4.
Sci Rep ; 10(1): 411, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941934

RESUMO

The study is aimed at investigating the radiative properties of soot aggregates at determined morphological features using both experimental and numerical methods. Soot aggregates collected from air monitoring stations in different locations were examined. The locations were divided into three groups. The first group (Case 1) included the coastal and industrial zone; the second group (Case 2) consisted of small and large cities; and the third group (Case 3) included areas in the neighbourhood of thermal power plants. The absorbance measurements of the soot aggregates were conducted in the visible and near-infrared spectra, and in the wavelength range of 2 µm-20 µm. The samples were characterised by scanning electron microscopy (SEM), and their radiative properties were assessed using the discrete dipole approximation (DDA) for numerically generated fractal aggregates with two popular refractive indices of m = 1.60 + 0.60i and m = 1.90 + 0.75i. Calculations were conducted for primary particles in point-contact, with 20% overlapping and with a coating (50% and 80%) in the wavelength range of 0.4-1.064 µm. The largest measured absorbance values in both the winter and summer seasons were found in the cities in Case 1, and the x-ray diffraction (XRD) phases of the samples were also presented. The radiative properties of the aggregates, i.e., Df = 1.78 and kf = 2.0 representing Case 3, were close to those of aggregates with Df = 2.1 and kf = 2.35 representing Case 1 in the investigated wavelength range. The calculated radiative properties and the experimental absorbance measurements for point-contact and overlapping situations showed the same trend in the examined wavelengths. The absorbance properties of the samples of coastal and industrial zones were distinctively higher than others in the wavelength range of 2 µm-20 µm which could be attributed to the PAH effects.

5.
Environ Sci Technol ; 53(11): 6383-6391, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31059244

RESUMO

In the last two to three decades, many efforts have been made to evaluate the radiative properties of soot in flames. Due to the strong impact of soot on global warming and the aging process of soot particles in the atmosphere, it is necessary to gain a better understanding on how the radiative properties of soot are affected by coating with nonabsorbing organic aerosol compounds. In the present study, the aging process is experimentally mimicked in the laboratory by coating oleic acid onto freshly generated soot particles. The morphological restructuring of soot particles is determined by nonoptical techniques for mobility diameter and effective density and by angular light scattering for gyration radius and fractal dimension. Both approaches give results in good agreement. Moreover, spectrally resolved scattering measurements between 500 and 700 nm have been carried out. The experimental data are in satisfactory agreement with previously published numerical results and enable the validation of a Rayleigh-Debye-Gans theory for coated fractal aggregates (RDG-CFA) that could be integrated in climate models or for the interpretation of scattering based measurements.


Assuntos
Atmosfera , Fuligem , Aerossóis , Compostos Orgânicos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...