Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427813

RESUMO

Aneuploidy is common in eukaryotes, often leading to decreased fitness. However, evidence from fungi and human tumur cells suggests that specific aneuploidies can be beneficial under stressful conditions and facilitate adaptation. In a previous evolutionary experiment with yeast, populations evolving under heat stress became aneuploid, only to later revert to euploidy after beneficial mutations accumulated. It was therefore suggested that aneuploidy is a "stepping stone" on the path to adaptation. Here, we test this hypothesis. We use Bayesian inference to fit an evolutionary model with both aneuploidy and mutation to the experimental results. We then predict the genotype frequency dynamics during the experiment, demonstrating that most of the evolved euploid population likely did not descend from aneuploid cells, but rather from the euploid wild-type population. Our model shows how the beneficial mutation supply-the product of population size and beneficial mutation rate-determines the evolutionary dynamics: with low supply, much of the evolved population descends from aneuploid cells; but with high supply, beneficial mutations are generated fast enough to outcompete aneuploidy due to its inherent fitness cost. Our results suggest that despite its potential fitness benefits under stress, aneuploidy can be an evolutionary "diversion" rather than a "stepping stone": it can delay, rather than facilitate, the adaptation of the population, and cells that become aneuploid may leave less descendants compared to cells that remain diploid.


Assuntos
Aneuploidia , Fungos , Humanos , Teorema de Bayes , Diploide
2.
PLoS Biol ; 17(3): e3000182, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925180

RESUMO

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation.


Assuntos
Evolução Biológica , Escherichia coli/metabolismo , Humanos , Modelos Genéticos , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Temperatura
3.
Nat Commun ; 9(1): 1530, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670097

RESUMO

How new functions arise de novo is a fundamental question in evolution. We studied de novo evolution of promoters in Escherichia coli by replacing the lac promoter with various random sequences of the same size (~100 bp) and evolving the cells in the presence of lactose. We find that ~60% of random sequences can evolve expression comparable to the wild-type with only one mutation, and that ~10% of random sequences can serve as active promoters even without evolution. Such a short mutational distance between random sequences and active promoters may improve the evolvability, yet may also lead to accidental promoters inside genes that interfere with normal expression. Indeed, our bioinformatic analyses indicate that E. coli was under selection to reduce accidental promoters inside genes by avoiding promoter-like sequences. We suggest that a low threshold for functionality balanced by selection against undesired targets can increase the evolvability by making new beneficial features more accessible.


Assuntos
Escherichia coli/genética , Mutação , Regiões Promotoras Genéticas , Motivos de Aminoácidos , Cromossomos Bacterianos/genética , Biologia Computacional , Genoma Bacteriano , Genômica , Glicerol/química , Seleção Genética , Transcrição Gênica
4.
BMC Genomics ; 17: 674, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27552923

RESUMO

BACKGROUND: Cells constantly adapt to changes in their environment. When environment shifts between conditions that were previously encountered during the course of evolution, evolutionary-programmed responses are possible. Cells, however, may also encounter a new environment to which a novel response is required. To characterize the first steps in adaptation to a novel condition, we studied budding yeast growth on xylulose, a sugar that is very rarely found in the wild. RESULTS: We previously reported that growth on xylulose induces the expression of amino acid biosynthesis genes in multiple natural yeast isolates. This induction occurs despite the presence of amino acids in the growth medium and is a unique response to xylulose, not triggered by naturally available carbon sources. Propagating these strains for ~300 generations on xylulose significantly improved their growth rate. Notably, the most significant change in gene expression was the loss of amino acid biosynthesis gene induction. Furthermore, the reduction in amino-acid biosynthesis gene expression on xylulose was tightly correlated with the improvement in growth rate, suggesting that internal depletion of amino-acids presented a major bottleneck limiting growth in xylulose. CONCLUSIONS: We discuss the possible implications of our results for explaining how cells maintain the balance between supply and demand of amino acids during growth in evolutionary 'familiar' vs. 'novel' conditions.


Assuntos
Carbono/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Xilulose/metabolismo , Adaptação Fisiológica , Aminoácidos/biossíntese , Regulação Fúngica da Expressão Gênica , Saccharomycetales/fisiologia
5.
Cell ; 163(3): 549-59, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26496602

RESUMO

Adaptation is the process in which organisms improve their fitness by changing their phenotype using genetic or non-genetic mechanisms. The adaptation toolbox consists of varied molecular and genetic means that we posit span an almost continuous "adaptation spectrum." Different adaptations are characterized by the time needed for organisms to attain them and by their duration. We suggest that organisms often adapt by progressing the adaptation spectrum, starting with rapidly attained physiological and epigenetic adaptations and culminating with slower long-lasting genetic ones. A tantalizing possibility is that earlier adaptations facilitate realization of later ones.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Mutação , Animais , Metilação de DNA , Epigênese Genética , Humanos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia
6.
Elife ; 2: e01339, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24363105

RESUMO

Changes in expression patterns may occur when organisms are presented with new environmental challenges, for example following migration or genetic changes. To elucidate the mechanisms by which the translational machinery adapts to such changes, we perturbed the tRNA pool of Saccharomyces cerevisiae by tRNA gene deletion. We then evolved the deletion strain and observed that the genetic adaptation was recurrently based on a strategic mutation that changed the anticodon of other tRNA genes to match that of the deleted one. Strikingly, a systematic search in hundreds of genomes revealed that anticodon mutations occur throughout the tree of life. We further show that the evolution of the tRNA pool also depends on the need to properly couple translation to protein folding. Together, our observations shed light on the evolution of the tRNA pool, demonstrating that mutation in the anticodons of tRNA genes is a common adaptive mechanism when meeting new translational demands. DOI: http://dx.doi.org/10.7554/eLife.01339.001.


Assuntos
Evolução Molecular , RNA Fúngico/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Anticódon , Sequência de Bases , Regulação Fúngica da Expressão Gênica , Humanos , Dados de Sequência Molecular , Mutação , Dobramento de Proteína , RNA Fúngico/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Estresse Fisiológico , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 109(51): 21010-5, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23197825

RESUMO

Aneuploidy, an abnormal number of chromosomes, is a widespread phenomenon found in unicellulars such as yeast, as well as in plants and in mammalians, especially in cancer. Aneuploidy is a genome-scale aberration that imposes a severe burden on the cell, yet under stressful conditions specific aneuploidies confer a selective advantage. This dual nature of aneuploidy raises the question of whether it can serve as a stable and sustainable evolutionary adaptation. To clarify this, we conducted a set of laboratory evolution experiments in yeast and followed the long-term dynamics of aneuploidy under diverse conditions. Here we show that chromosomal duplications are first acquired as a crude solution to stress, yet only as transient solutions that are eliminated and replaced by more efficient solutions obtained at the individual gene level. These transient dynamics of aneuploidy were repeatedly observed in our laboratory evolution experiments; chromosomal duplications gained under stress were eliminated not only when the stress was relieved, but even if it persisted. Furthermore, when stress was applied gradually rather than abruptly, alternative solutions appear to have emerged, but not aneuploidy. Our findings indicate that chromosomal duplication is a first evolutionary line of defense, that retains survivability under strong and abrupt selective pressures, yet it merely serves as a "quick fix," whereas more refined and sustainable solutions take over. Thus, in the perspective of genome evolution trajectory, aneuploidy is a useful yet short-lived intermediate that facilitates further adaptation.


Assuntos
Aneuploidia , Duplicação Cromossômica , Cromossomos/ultraestrutura , Neoplasias/genética , Saccharomyces cerevisiae/genética , Evolução Biológica , Mapeamento Cromossômico , Meio Ambiente , Evolução Molecular , Proteínas Fúngicas/genética , Genes Fúngicos , Haploidia , Proteínas de Choque Térmico/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...