Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000160

RESUMO

222 nm far-ultraviolet (F-UV) light has a bactericidal effect similar to deep-ultraviolet (D-UV) light of about a 260 nm wavelength. The cytotoxic effect of 222 nm F-UV has not been fully investigated. DLD-1 cells were cultured in a monolayer and irradiated with 222 nm F-UV or 254 nm D-UV. The cytotoxicity of the two different wavelengths of UV light was compared. Changes in cell morphology after F-UV irradiation were observed by time-lapse imaging. Differences in the staining images of DNA-binding agents Syto9 and propidium iodide (PI) and the amount of cyclobutane pyrimidine dimer (CPD) were examined after UV irradiation. F-UV was cytotoxic to the monolayer culture of DLD-1 cells in a radiant energy-dependent manner. When radiant energy was set to 30 mJ/cm2, F-UV and D-UV showed comparable cytotoxicity. DLD-1 cells began to expand immediately after 222 nm F-UV light irradiation, and many cells incorporated PI; in contrast, PI uptake was at a low level after D-UV irradiation. The amount of CPD, an indicator of DNA damage, was higher in cells irradiated with D-UV than in cells irradiated with F-UV. This study proved that D-UV induced apoptosis from DNA damage, whereas F-UV affected membrane integrity in monolayer cells.


Assuntos
Apoptose , Membrana Celular , Neoplasias do Colo , Dano ao DNA , Raios Ultravioleta , Humanos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Apoptose/efeitos da radiação , Dímeros de Pirimidina/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38825404

RESUMO

BACKGROUND: Periodontal disease is the leading cause of tooth loss, and an association between periodontal disease and non-oral systemic diseases has been shown. Formation of biofilm by periodontal pathogens such as Fusobacterium nucleatum, Porphyromonas gingivalis, and Streptococcus mutans and their resistance to antimicrobial agents are at the root of persistent and chronic bacterial infections. METHODS: The bactericidal effect of far-ultraviolet (F-UV) light irradiation at 222 nm on periodontal bacteria was assessed qualitatively and quantitatively. The effect of biofilm disruption by F-UV light on periodontal bacteria was examined by crystal violet staining, and the morphologic changes of the biofilm after F-UV irradiation were explored by confocal laser microscopy and scanning electron microscopy. We developed a thin fiber-type 222 nm F-UV irradiator and studied its safety and effect of reducing bacteria in rodent models. RESULTS: F-UV light at 222 nm had a bactericidal effect on F. nucleatum, P. gingivalis, and S. mutans. Irradiation with F-UV light reduced the biofilm formed by the bacteria and sterilized them from within. Confocal laser microscopy showed a clear reduction in biofilm thickness, and scanning electron microscopy confirmed disintegration of the biofilm architecture. F-UV irradiation was less damaging to DNA and less cytotoxic than deep-ultraviolet light, and it reduced bacterial counts on the tooth surface. CONCLUSION: F-UV irradiation has the potential to destroy biofilm and act as a bactericide against pathogenic bacteria in the biofilm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...