Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(40): 45235-45242, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32924427

RESUMO

Two-dimensional (2D) Ruddlesden-Popper perovskites have been demonstrated to possess great potential for optical and optoelectronic devices. Because they exhibit better ambient stability than three-dimensional (3D) perovskites, they have been considered as potential substitutes for 3D perovskites as light absorbing layers to improve the photoresponsivity of monolayer transition metal dichalcogenide (TMDC)-based photodetectors. Investigation of the optoelectronic properties of TMDC monolayer/2D perovskite vertical heterostructures is however at an early stage. Here, we address the photovoltaic effect and the photodetection performance in tungsten disulfide (WS2) monolayer/2D perovskite (C6H5C2H4NH3)2PbI4 (PEPI) vertical heterostructures. A vertical device geometry with separate graphene contacts to both heterointerface constituents acted as a photovoltaic device and self-driven photodetector. The photovoltaic device exhibited an open circuit voltage of -0.57 V and a short circuit current of 41.6 nA. A photoresponsivity of 0.13 mA/W at the WS2/PEPI heterointerface was achieved, which was signified by a factor of 5 compared to that from the individual WS2 region. The current on/off ratio of the self-driven photodetector was approximately 1500. The photoresponsivity and external quantum efficiency of the self-driven photodetector were estimated to be 24.2 µA/W and 5.7 × 10-5, respectively. This work corroborates that 2D perovskites are promising light absorbing layers in optoelectronic devices with a TMDC-based heterointerface.

2.
ACS Nano ; 13(9): 10768-10775, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31491079

RESUMO

Controlled substitutional doping of two-dimensional transition-metal dichalcogenides (TMDs) is of fundamental importance for their applications in electronics and optoelectronics. However, achieving p-type conductivity in MoS2 and WS2 is challenging because of their natural tendency to form n-type vacancy defects. Here, we report versatile growth of p-type monolayer WS2 by liquid-phase mixing of a host tungsten source and niobium dopant. We show that crystallites of WS2 with different concentrations of substitutionally doped Nb up to 1014 cm-2 can be grown by reacting solution-deposited precursor film with sulfur vapor at 850 °C, reflecting the good miscibility of the precursors in the liquid phase. Atomic-resolution characterization with aberration-corrected scanning transmission electron microscopy reveals that the Nb concentration along the outer edge region of the flakes increases consistently with the molar concentration of Nb in the precursor solution. We further demonstrate that ambipolar field-effect transistors can be fabricated based on Nb-doped monolayer WS2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...