Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Growth Regul ; 98(3): 439-450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35892116

RESUMO

The global coal industry yields a vast amount of tailings waste, and the utilisation of these tailings necessitates innovative efforts contributing to the United Nations Sustainable Development Goals. One of such novel initiatives is to reuse coal tailings (CT) safely, ecofriendly, and cost-effectively in agroecosystems as a soil conditioner to enhance the productivity of lands. This study aimed to evaluate the potential utilisation of coal tailings waste in the soil amelioration to improve plant performance. The physico-chemical characteristics of coal tailings from two Australian mining sites (CT1 and CT2) showed that the tailings samples are alkaline with loamy and loamy sand textures, respectively. The tailings have ~ 3% of macronutrients, high carbon (C), and low heavy metals and metalloids (As, Cd, Se, Cu, Zn, and Pb). The germination rate of tomato seeds was improved in the low-rate CT treatment. Greenhouse tomato plants exhibited an increase in leaf's K, Ca, and Mg contents in CT1 and CT2 treatments. More importantly, the CT treatment-induced accumulation of heavy metals in plants was mostly insignificant in both CT treatments. Therefore, we highlight the potential application of coal tailings as a soil conditioner because of the beneficial effect of improved carbon and nutrients (N, P, K, Mg, and Ca) in tomato leaves. Further amendment of the coal tailings should focus on the adjustment of pH and the addition of other beneficial materials for the improvement of soil properties for crops in both the greenhouse and the field.

2.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216206

RESUMO

Rice (Oryza sativa), a staple crop for a substantial part of the world's population, is highly sensitive to soil salinity; however, some wild Oryza relatives can survive in highly saline environments. Sodium/hydrogen antiporter (NHX) family members contribute to Na+ homeostasis in plants and play a major role in conferring salinity tolerance. In this study, we analyzed the evolution of NHX family members using phylogeny, conserved domains, tertiary structures, expression patterns, and physiology of cultivated and wild Oryza species to decipher the role of NHXs in salt tolerance in Oryza. Phylogenetic analysis showed that the NHX family can be classified into three subfamilies directly related to their subcellular localization: endomembrane, plasma membrane, and tonoplast (vacuolar subfamily, vNHX1). Phylogenetic and structural analysis showed that vNHX1s have evolved from streptophyte algae (e.g., Klebsormidium nitens) and are abundant and highly conserved in all major land plant lineages, including Oryza. Moreover, we showed that tissue tolerance is a crucial trait conferring tolerance to salinity in wild rice species. Higher Na+ accumulation and reduced Na+ effluxes in leaf mesophyll were observed in the salt-tolerant wild rice species O. alta, O. latifolia, and O. coarctata. Among the key genes affecting tissue tolerance, expression of NHX1 and SOS1/NHX7 exhibited significant correlation with salt tolerance among the rice species and cultivars. This study provides insights into the evolutionary origin of plant NHXs and their role in tissue tolerance of Oryza species and facilitates the inclusion of this trait during the development of salinity-tolerant rice cultivars.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Oryza/genética , Estresse Salino/genética , Tolerância ao Sal/genética , Trocadores de Sódio-Hidrogênio/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/fisiologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Salinidade , Sódio/metabolismo
3.
Stress Biol ; 2(1): 8, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37676369

RESUMO

Species of wild rice (Oryza spp.) possess a wide range of stress tolerance traits that can be potentially utilized in breeding climate-resilient cultivated rice cultivars (Oryza sativa) thereby aiding global food security. In this study, we conducted a greenhouse trial to evaluate the salinity tolerance of six wild rice species, one cultivated rice cultivar (IR64) and one landrace (Pokkali) using a range of electrophysiological, imaging, and whole-plant physiological techniques. Three wild species (O. latifolia, O. officinalis and O. coarctata) were found to possess superior salinity stress tolerance. The underlying mechanisms, however, were strikingly different. Na+ accumulation in leaves of O. latifolia, O. officinalis and O. coarctata were significantly higher than the tolerant landrace, Pokkali. Na+ accumulation in mesophyll cells was only observed in O. coarctata, suggesting that O. officinalis and O. latifolia avoid Na+ accumulation in mesophyll by allocating Na+ to other parts of the leaf. The finding also suggests that O. coarctata might be able to employ Na+ as osmolyte without affecting its growth. Further study of Na+ allocation in leaves will be helpful to understand the mechanisms of Na+ accumulation in these species. In addition, O. coarctata showed Proto Kranz-like leaf anatomy (enlarged bundle sheath cells and lower numbers of mesophyll cells), and higher expression of C4-related genes (e.g., NADPME, PPDK) and was a clear outlier with respect to salinity tolerance among the studied wild and cultivated Oryza species. The unique phylogenetic relationship of O. coarctata with C4 grasses suggests the potential of this species for breeding rice with high photosynthetic rate under salinity stress in the future.

4.
Physiol Plant ; 172(3): 1594-1608, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33619741

RESUMO

Wild rice Oryza rufipogon, a progenitor of cultivated rice Oryza sativa L., possesses superior salinity tolerance and is a potential donor for breeding salinity tolerance traits in rice. However, a mechanistic basis of salinity tolerance in this donor species has not been established. Here, we examined salinity tolerance from the early vegetative stage to maturity in O. rufipogon in comparison with a salt-susceptible (Koshihikari) and a salt-tolerant (Reiziq) variety of O. sativa. We assessed their phylogeny and agronomical traits, photosynthetic performance, ion contents, as well as gene expression in response to salinity stress. Salt-tolerant O. rufipogon exhibited efficient leaf photosynthesis and less damage to leaf tissues during the course of salinity treatment. In addition, O. rufipogon showed a significantly higher tissue Na+ accumulation that is achieved by vacuolar sequestration compared to the salt tolerant O. sativa indica subspecies. These findings are further supported by the upregulation of genes involved with ion transport and sequestration (e.g. high affinity K+ transporter 1;4 [HKT1;4], Na+ /H+ exchanger 1 [NHX1] and vacuolar H+ -ATPase c [VHA-c]) in salt-tolerant O. rufipogon as well as by the close phylogenetic relationship of key salt-responsive genes in O. rufipogon to these in salt-tolerant wild rice species such as O. coarctata. Thus, the high accumulation of Na+ in the leaves of O. rufipogon acts as a cheap osmoticum to minimize the high energy cost of osmolyte biosynthesis and excessive reactive oxygen species production. These mechanisms demonstrated that O. rufipogon has important traits that can be used for improving salinity tolerance in cultivated rice.


Assuntos
Oryza , Oryza/genética , Filogenia , Salinidade , Tolerância ao Sal , Sódio
5.
Elife ; 62017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28323614

RESUMO

Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3'-phosphoadenosine 5'- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1-2. PAP also inhibits wild type and abi1-1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca2+; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.


Assuntos
Ácido Abscísico/metabolismo , Difosfato de Adenosina/metabolismo , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Germinação , Estômatos de Plantas/fisiologia , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...