Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 42(5): 759-779.e12, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744245

RESUMO

The lack of comprehensive diagnostics and consensus analytical models for evaluating the status of a patient's immune system has hindered a wider adoption of immunoprofiling for treatment monitoring and response prediction in cancer patients. To address this unmet need, we developed an immunoprofiling platform that uses multiparameter flow cytometry to characterize immune cell heterogeneity in the peripheral blood of healthy donors and patients with advanced cancers. Using unsupervised clustering, we identified five immunotypes with unique distributions of different cell types and gene expression profiles. An independent analysis of 17,800 open-source transcriptomes with the same approach corroborated these findings. Continuous immunotype-based signature scores were developed to correlate systemic immunity with patient responses to different cancer treatments, including immunotherapy, prognostically and predictively. Our approach and findings illustrate the potential utility of a simple blood test as a flexible tool for stratifying cancer patients into therapy response groups based on systemic immunoprofiling.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/sangue , Imunoterapia/métodos , Citometria de Fluxo/métodos , Transcriptoma , Prognóstico , Perfilação da Expressão Gênica/métodos , Feminino , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia
2.
BMC Cell Biol ; 16: 17, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084399

RESUMO

BACKGROUND: Cells contain several inositol pyrophosphates (PP-InsPs; also known as diphosphoinositol polyphosphates), which play pivotal roles in cellular and organismic homeostasis. It has been proposed that determining mechanisms of compartmentation of the synthesis of a particular PP-InsP is key to understanding how each of them may exert a specific function. Human PPIP5K2 (hPPIP5K2), one of the key enzymes that synthesizes PP-InsPs, contains a putative consensus sequence for a nuclear localization signal (NLS). However, such in silico analysis has limited predictive power, and may be complicated by phosphorylation events that can dynamically modulate NLS function. We investigated if this candidate NLS is functional and regulated, using the techniques of cell biology, mutagenesis and mass spectrometry. RESULTS: Multiple sequence alignments revealed that the metazoan PPIP5K2 family contains a candidate NLS within a strikingly well-conserved 63 amino-acid domain. By analyzing the distribution of hPPIP5K2-GFP in HEK293T cells with the techniques of confocal microscopy and imaging flow cytometry, we found that a distinct pool of hPPIP5K2 is present in the nucleus. Imaging flow cytometry yielded particular insight into the characteristics of the nuclear hPPIP5K2 sub-pool, through a high-throughput, statistically-robust analysis of many hundreds of cells. Mutagenic disruption of the candidate NLS in hPPIP5K2 reduced its degree of nuclear localization. Proximal to the NLS is a Ser residue (S1006) that mass spectrometry data indicate is phosphorylated inside cells. The degree of nuclear localization of hPPIP5K2 was increased when S1006 was rendered non-phosphorylatable by its mutation to Ala. Conversely, a S1006D phosphomimetic mutant of hPPIP5K2 exhibited a lower degree of nuclear localization. CONCLUSIONS: The current study describes for the first time the functional significance of an NLS in the conserved PPIP5K2 family. We have further demonstrated that there is phosphorylation of a Ser residue that is proximal to the NLS of hPPIP5K2. These conclusions draw attention to nuclear compartmentation of PPIP5K2 as being a physiologically relevant and covalently-regulated event. Our study also increases general insight into the consensus sequences of other NLSs, the functions of which might be similarly regulated.


Assuntos
Núcleo Celular/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosfopeptídeos/análise , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Espectrometria de Massas em Tandem
3.
PLoS One ; 7(6): e38085, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761665

RESUMO

BACKGROUND: Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis has been extensively studied. However, since the developmental defects observed in Bat3-null mouse embryos cannot be explained solely by defects in apoptosis, we investigated whether BAT3 is also involved in cell-cycle progression. METHODS/PRINCIPAL FINDINGS: Using a stable-inducible Bat3-knockdown cellular system, we demonstrated that reduced BAT3 protein level causes a delay in both G1/S transition and G2/M progression. Concurrent with these changes in cell-cycle progression, we observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21, which is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Our findings indicate that in Bat3-knockdown cells, p21 continues to be synthesized during cell-cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent delay in cell-cycle progression. Finally, we showed that BAT3 co-localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. CONCLUSION: Our study reveals a novel, non-apoptotic role for BAT3 in cell-cycle regulation. By maintaining a low p21 protein level during the G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 to S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation by cyclin A/Cdk2, an event required for G2/M progression. BAT3 modulates these pro- and anti-proliferative roles of p21 at least in part by regulating cyclin A abundance, as well as p21 translocation between the cytoplasm and the nucleus to ensure that it functions in the appropriate intracellular compartment during each phase of the cell cycle.


Assuntos
Apoptose , Neoplasias Ósseas/patologia , Ciclo Celular/fisiologia , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Chaperonas Moleculares/metabolismo , Osteossarcoma/patologia , Western Blotting , Neoplasias Ósseas/metabolismo , Replicação do DNA , Citometria de Fluxo , Imunofluorescência , Humanos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Osteossarcoma/metabolismo , Fosforilação , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...