Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 252: 126342, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591432

RESUMO

Herein, the polymer nanomatrix of chitosan/SiO2 (CHI/n-SiO2) was enriched with a π-π electron donor-acceptor system using diaromatic rings of benzil (BEZ) assisted via a hydrothermal process to obtain an effective adsorbent of chitosan-benzil/SiO2 (CHI-BEZ/n-SiO2). The polymer nanomatrix (CHI/n-SiO2) and the resulting adsorbent (CHI-BEZ/n-SiO2) were applied to remove the anionic acid red 88 (AR88) dye from aqueous media in a comparative mode. Box-Behnken design (BBD) was adopted to optimize AR88 adsorption onto CHI/n-SiO2 and CHI-BEZ/n-SiO2 with respect to variables that influence AR88 adsorption (adsorbent dose: 0.02-0.1 g/100 mL; pH: 4-10; and time: 10-90). The adsorption studies at equilibrium were conducted with a variety of initial AR88 dye concentrations (20-200 mg/L). The adsorption isotherm results reveal that the AR88 adsorption by CHI/n-SiO2 and CHI-BEZ/n-SiO2 are described by the Langmuir model. The kinetic adsorption profiles of AR88 with CHI/n-SiO2 and CHI-BEZ/n-SiO2 reveal that the pseudo-first-order model provides the best fit results. Interestingly, CHI-BEZ/n-SiO2 has a high adsorption capacity (261.2 mg/g), which exceeds the adsorption capacity of CHI/n-SiO2 (215.1 mg/g) that relates to the surface effects of SiO2 and the functionalization of chitosan with BEZ. These findings show that CHI-BEZ/n-SiO2 represents a highly efficient adsorbent for the removal of harmful pollutants from water, which outperforming the CHI/n-SiO2 system.


Assuntos
Quitosana , Poluentes Químicos da Água , Dióxido de Silício , Adsorção , Cinética , Concentração de Íons de Hidrogênio
2.
Int J Biol Macromol ; 247: 125806, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37453635

RESUMO

An effective hydrothermally prepared chitosan-benzaldehyde/SiO2 adsorbent (CTA-BZA/SiO2) employed functionalization of a CTA biopolymer with SiO2 nanoparticles and BZA. CTA-BZA/SiO2 is an adsorbent that was utilized for the adsorption of an acidic dye (acid red 88, AR88) from synthetic wastewater. The fundamental adsorption variables (A: CTA-BZA/SiO2 dosage (0.02-0.1 g); B: pH (4-10); and C: duration (10-60)) were optimized via the Box-Behnken design (BBD). The Langmuir and Freundlich isotherms (coefficients of determination R2 = 0.99) agreed well with empirical data of AR88 adsorption by CTA-BZA/SiO2. The pseudo-first-order model showed reasonable agreement with the kinetic data of AR88 adsorption by CTA-BZA/SiO2. The maximal AR88 adsorption capacity (qmax) for CTA-BZA/SiO2 was identified to be 252.4 mg/g. The electrostatic attractions between both the positively charged CTA-BZA/SiO2 adsorbent and the AR88 anions, plus the n-π, π-π, and H-bond interactions contribute to the favourable adsorption process. This study reveals that CTA-BZA/SiO2 has the capacity to be a suitable adsorbent for the removal of a wider range of organic dyes from industrial effluents.


Assuntos
Quitosana , Nanopartículas , Poluentes Químicos da Água , Adsorção , Quitosana/química , Dióxido de Silício/química , Benzaldeídos , Corantes , Nanopartículas/química , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
3.
Heliyon ; 6(9): e05086, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33015401

RESUMO

Cat manure (CM) possesses high level of nutrients for growing food crop. However, animal manure may contain toxic elements that may contaminate food crop. Spent coffee ground (SCG) may be used to reduce mobility of heavy metals and reduce crop uptake. In this study, SCG was composted with CM for 31 days to produce a co-compost (SCG-CM) for growing spinach (Spinacia oleracea). The growth rate of spinach was assessed until its maturity, and the metal uptake of spinach shoot was determined thereafter using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The effect of soil treatment with SCG-CM on the height and elemental composition of spinach were compared with that of chicken manure compost (CMC). The prepared composts were primarily organic matter (72.9-81.4 % w/w) with the rest are ash (13.3-23.4 % w/w) and moisture (1.2-2.6 % w/w). Zinc content in SCG-CM (1261 ± 0.1 mg/kg) is significantly higher than that of soil and CMC (p < 0.05) and has exceeded the maximum permissible limit set by European Union Standard (2002) and the Malaysian Compost Quality Standard and Guidelines (2000). Matured spinach reached maximum plant height after 33 days. The amendment of SCG-CM significantly increased the height of spinach (32 ± 6 cm) compared to that of CMC (13 ± 1 cm) (p < 0.05). However, contents of Zn, Cu, Pb and Cd were not increased for spinach grown in the SCG-CM-amended soil, and the level of those elements are below permissible limit set by the Malaysian Food Act 1983 and Food Regulations 1985. This study shows that SCG-CM is effective in improving yield without causing accumulation of toxic trace elements in spinach.

4.
Environ Sci Pollut Res Int ; 23(2): 1050-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26538256

RESUMO

Pristine chitosan beads were modified with sulfur (S)-containing functional groups to produce thiolated chitosan beads (ETB), thereby increasing S donor ligands and crosslinks. The effect of temperature, heating time, carbon disulfide (CS2)/chitosan ratio, and pH on total S content of ETB was examined using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The total S content of ETB increased with increasing CS2/chitosan ratio and decreased with decreasing pH and increasing temperature (>60 °C) and heating time (at 60 °C). Spectroscopic analyses revealed the presence of thiol (-SH)/thione, disulfide (-S-S-), and sulfonate groups in ETB. The thiolation mechanism involves decomposition of dithiocarbamate groups, thereby forming thiourea crosslinks and trithiocarbonate, resulting in -SH oxidation to produce -S-S- crosslinks. The partially formed ETB crosslinks contribute to its acid stability and are thermodynamically feasible in adsorbing Cd and Cu. The S-containing functional groups added to chitinous wastes act as sorbents for metal remediation from acidic environments.


Assuntos
Cádmio/química , Quitosana/química , Cobre/química , Recuperação e Remediação Ambiental/métodos , Enxofre/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Recuperação e Remediação Ambiental/instrumentação , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Purificação da Água/instrumentação
5.
Rev Environ Contam Toxicol ; 233: 1-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25367132

RESUMO

Chitosan originates from the seafood processing industry and is one of the most abundant of bio-waste materials. Chitosan is a by-product of the alkaline deacetylation process of chitin. Chemically, chitosan is a polysaccharide that is soluble in acidic solution and precipitates at higher pHs. It has great potential for certain environmental applications, such as remediation of organic and inorganic contaminants, including toxic metals and dyes in soil, sediment and water, and development of contaminant sensors. Traditionally, seafood waste has been the primary source of chitin. More recently, alternative sources have emerged such as fungal mycelium, mushroom and krill wastes, and these new sources of chitin and chitosan may overcome seasonal supply limitations that have existed. The production of chitosan from the above-mentioned waste streams not only reduces waste volume, but alleviates pressure on landfills to which the waste would otherwise go. Chitosan production involves four major steps, viz., deproteination, demineralization, bleaching and deacetylation. These four processes require excessive usage of strong alkali at different stages, and drives chitosan's production cost up, potentially making the application of high-grade chitosan for commercial remediation untenable. Alternate chitosan processing techniques, such as microbial or enzymatic processes, may become more cost-effective due to lower energy consumption and waste generation. Chitosan has proved to be versatile for so many environmental applications, because it possesses certain key functional groups, including - OH and -NH2 . However, the efficacy of chitosan is diminished at low pH because of its increased solubility and instability. These deficiencies can be overcome by modifying chitosan's structure via crosslinking. Such modification not only enhances the structural stability of chitosan under low pH conditions, but also improves its physicochemical characteristics, such as porosity, hydraulic conductivity, permeability, surface area and sorption capacity. Crosslinked chitosan is an excellent sorbent for trace metals especially because of the high flexibility of its structural stability. Sorption of trace metals by chitosan is selective and independent of the size and hardness of metal ions, or the physical form of chitosan (e.g., film, powder and solution). Both -OH and -NH2 groups in chitosan provide vital binding sites for complexing metal cations. At low pH, -NH3 + groups attract and coagulate negatively charged contaminants such as metal oxyanions, humic acids and dye molecules. Grafting certain functional molecules into the chitin structure improves sorption capacity and selectivity for remediating specific metal ions. For example, introducing sulfur and nitrogen donor ligands to chitosan alters the sorption preference for metals. Low molecular weight chitosan derivatives have been used to remediate metal contaminated soil and sediments. They have also been applied in permeable reactive barriers to remediate metals in soil and groundwater. Both chitosan and modified chitosan have been used to phytoremediate metals; however, the mechanisms by which they assist in mobilizing metals are not yet well understood. In addition, microbes have been used in combination with chitosan to remediate metals (e.g., Cu and Zn) in contaminated soils. Chitosan has also been used to remediate organic contaminants, such as oil-based wastewater, dyes, tannins, humic acids, phenols, bisphenoi-A, p-benzoquinone, organo-phosphorus insecticides, among others. Chitosan has also been utilized to develop optical and electrochemical sensors for in-situ detection of trace contaminants. In sensor technology, naturally-derived chitosan is used primarily as an immobilizing agent that results from its enzyme compatibility, and stabilizing effect on nanoparticles. Contaminant-sensing agents, such as enzymes, microbes and nanoparticles, have been homogeneously immobilized in chitosan gels by using coagulating (e.g., alginate, phosphate) or crosslinking agents (e.g., GA, ECH). Such immobilization maintains the stability of sensing elements in the chitosan gel phase, and prevents inactivation and loss of the sensing agent. In this review, we have shown that chitosan, an efficient by-product of a waste biomaterial, has great potential for many environmental applications. With certain limitations, chitosan and its derivatives can be used for remediating contaminated soil and wastewater. Notwithstanding, further research is needed to enhance the physicochemical properties of chitosan and mitigate its deficiencies.


Assuntos
Quitosana/química , Poluentes do Solo/química , Poluentes Químicos da Água/química , Recuperação e Remediação Ambiental , Metais Pesados/química , Compostos Orgânicos/química , Eliminação de Resíduos Líquidos
6.
Water Sci Technol ; 64(12): 2425-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22170837

RESUMO

The potential of Pleurotus ostreatus spent mushroom compost (PSMC) as a green biosorbent for nickel (II) biosorption was investigated in this study. A novel approach of using the half-saturation concentration of biosorbent to rapidly determine the uptake, kinetics and mechanism of biosorption was employed together with cost per unit uptake analysis to determine the potential of this biosorbent. Fifty per cent nickel (II) biosorption was obtained at a half-saturation constant of 0.7 g biosorbent concentration, initial pH in the range of 4-8, 10 min contact time, 50 mL 50 mg/L nickel (II) initial concentration. The experimental data were well fitted with the Langmuir isotherm model and the maximum nickel (II) biosorption was 3.04 mg/g. The results corresponded well to a second pseudo order kinetic model with the coefficient of determination value of 0.9999. Based on FTIR analysis, the general alkyl, hydroxyl or amino, aliphatic alcohol and carbonyl functional groups of biosorbent were involved in the biosorption process. Therefore, biosorption of nickel (II) must involve several mechanisms simultaneously such as physical adsorption, chemisorption and ion exchange. Cost comparison for PSMC with Amberlite IRC-86 ion exchange resin indicates that the biosorbent has the potential to be developed into a cost effective and environmentally friendly treatment system.


Assuntos
Química Verde , Níquel/química , Pleurotus/fisiologia , Solo/química , Adsorção , Concentração de Íons de Hidrogênio , Fatores de Tempo , Água/química , Poluentes Químicos da Água/química , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...