Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 618: 475-482, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35366475

RESUMO

The water oxidation process, which comprises the oxygen evolution reaction (OER), is a critical catalytic mechanism for sustainable technologies like water electrolysis and fuel cells. Herein, we develop a unique metal-organic framework aided vanadium pentoxide nanorods (MOF-V2O5 NRs-500) that can be used as an OER electrocatalyst under alkaline solutions. The crystal structure, surface chemical state, and porosity of MOF-V2O5 NRs-500 can be altered by annealing in an oxygen atmosphere. The resultant MOF-V2O5 NRs-500 demonstrate high catalytic activity against OER in basic conditions, with a low overpotential of 300 mV at a derived current density of 50 mA cm-2, and extraordinary durability of more than 50 h. Superior electrochemical performance might be attributed to the high exposure level of active sites emanating from porous MOF-V2O5 NRs-500. Furthermore, the porous MOF-V2O5 NRs-500 skeleton may provide homogenous mass transport channels as well as quick electron transfer.

2.
J Colloid Interface Sci ; 616: 679-690, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245794

RESUMO

The development of multicomponent materials is the most efficient and successful way for creating advanced multifunctional catalysts. Herein, the bimetal FeCo nanoarrays enclosed N-CNTs have a high surface on carbon cloth support, which promotes efficient electron transport and prevents nanoparticle aggregation. Taking advantage of the high-level use of active material and fast charge transfer, the developed electrocatalyst exhibits excellent multifunctional electrocatalyst such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The N-CNTs@MOF FeCo nanoarrays @CC exhibit higher activity than reference catalysts including MOF FeCo nanoarrays@CC, FeCo nanoarrays@CC, and CC. Interestingly, the synthesized multifunctional catalyst, which serves as the air electrode in zinc-air batteries with liquid electrolytes as well as solid-state gel electrolytes possesses outstanding charging-discharge performance and long service life. This study provides enormous potential for the real implementation of portable, even wearable, and efficient rechargeable batteries in the future.

3.
Biochem Biophys Res Commun ; 299(3): 352-9, 2002 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-12445806

RESUMO

We have developed a subtractive cloning method in which target sequences are effectively enriched by selective adaptor ligation and PCR after hybridization. In this method both tester and driver DNAs are digested with RsaI, ligated with the linker DNA containing a KpnI recognition site, and amplified by PCR. The tester DNA samples are divided into two aliquots, each digested with either RsaI or KpnI. The two DNA samples are then combined and hybridized with an excess of the driver DNA retaining the linker. After hybridization, the DNA mixture is ligated to a new adaptor compatible only with double-stranded tester/tester DNAs. Therefore, only the tester/tester is selectively amplified in subsequent PCR. This also leads to complete elimination of the tester DNA hybridized with driver DNA from the tester DNA population. Although our protocol employs enzymatic treatments, the efficiency of the enzymatic treatments does not affect the subtraction efficiency. This new subtractive enrichment method was applied to isolate Chinese cabbage defense-related genes induced by Pseudomonas syringae pv. tomato (Pst), which elicits a hypersensitive response in Chinese cabbage. After two or three rounds of subtractive hybridization, the sequences of enriched DNAs were determined and examined by BLAST analysis. Northern blot hybridization showed that 12 of the 19 genes analyzed were strongly induced by Pst treatment. Among the 12 Pst-induced genes five represent pathogenesis-related genes encoding PR1a, two chitinases, a thaumatin-like protein, and a PR4 protein. Other Pst-induced genes include two cytochrome P450 genes responsible for glucosinolate biosynthesis, a disease resistance gene homolog, and several genes encoding proteins with unknown functions.


Assuntos
Brassica rapa/genética , Clonagem Molecular/métodos , Regulação da Expressão Gênica , Genes de Plantas , Técnicas de Amplificação de Ácido Nucleico , Brassica rapa/metabolismo , DNA/genética , DNA/metabolismo , Hibridização Genética , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pseudomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...