Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(8): 721, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985365

RESUMO

This study was conducted during October 2021 (autumn) and April 2022 (spring) to explore the phytoplankton community structure, their distribution characteristics, and the influence of environmental factors in the coastal waters of the Southern Beibu Gulf. The 15 sampling sites were grouped based on the difference in offshore distance to analyze the temporal and spatial differences in community structure and environmental driving in the investigated sea area of the coastal waters of the Southern Beibu Gulf. Permutational multivariate analysis of variance was conducted on the sample data in time and space, revealing that there is no significant difference in space (p > 0.05), but there is significant difference in time (p < 0.05). Notably, water pressure, pH, chemical oxygen demand, nitrite, and labile phosphate were higher in autumn, while total ammonia nitrogen, dissolved oxygen, and suspended solids were significantly higher in spring. Additionally, the study identified 87 phytoplankton species belonging to 6 phyla, dominating by Bacillariophyta, followed by Dinophyta and Cyanophyta. The phytoplankton density, Shannon Weiner's diversity index (H'), Pielou's evenness index (J), and Margalef's richness index (D) ranged from 84.88 to 4675.33 cells L-1, 0.56 to 2.58, 0.26 to 0.89, and 1.21 to 3.64, respectively. Permutational multivariate analysis of variance showed non-significant spatial differences in phytoplankton composition (p > 0.05) but seasonal differences (p < 0.05). Furthermore, canonical correspondence analysis (CCA) identified pH, dissolved oxygen, suspended solids, chemical oxygen demand, nitrite, and labile phosphate as key environmental factors influencing the phytoplankton community structure (p < 0.05). In this study, the dynamic changes of phytoplankton community structure and environmental factors in the southern coastal waters of Beibu Gulf were analyzed in detail from two aspects of time and space. The key environmental factors to protect the ecological environment in the southern coastal area of Beibu Gulf were found out. It provides a reference method and theoretical basis for the management and protection of Beibu Gulf and other tropical marine environment.


Assuntos
Monitoramento Ambiental , Fitoplâncton , Estações do Ano , Água do Mar , Fitoplâncton/crescimento & desenvolvimento , Água do Mar/química , Biodiversidade , Análise Espaço-Temporal , China
2.
Environ Monit Assess ; 195(7): 905, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37382693

RESUMO

For the first time, this study explored spatio-temporal variation in water quality and phytoplankton community structure in Changwang, Meishe, and Wuyuan Rivers in tropical Hainan Island, China. Phytoplankton samples and water were collected between March and December 2019 and analyzed using standard methods. Two-way ANOVA revealed significant spatial and seasonal variation in physico-chemical parameters (p < 0.05). Wuyuan had high TP (0.06 ± 0.04 mg L-1), TN (1.14 ± 0.71 mg L-1), NH4+-N (0.07 ± 0.09 mg L-1), Secchi depth (2.28 ± 3.79 m), salinity (3.60±5.50 ppt), and EC (332.50 ± 219.10 µS cm-1). At the same time, Meishe had high TP (0.07 ± 0.03 mg L-1), TN (1.04 ± 0.74 mg L-1), NH4+-N (0.07 ± 0.10 mg L-1), EC (327.61 ± 63.22 µS cm-1), and turbidity (40.25 ± 21.16 NTU). In terms of seasons, spring recorded high average TP, TN, NH4+-N, COD, and DO, while summer had a high temperature, Chl-a, salinity, and EC. Generally, the physico-chemical parameters met the China water quality standard limits (GB 3838-2002). Overall, 197 phytoplankton species belonging to Cyanophyta, Chlorophyta, Cryptophyta, Bacillariophyta, Pyrrophyta, Euglenophyta, Xanthophyta, and Chrysophyta were identified, with Cyanophyta being dominant. Phytoplankton density showed spatial changes varying from 18 × 106 cell L-1 to 84 × 106 cell L-1. The phytoplankton diversity ranged from 1.86 to 2.41, indicating a mesotrophic state. One-way ANOSIM showed no significant spatial dissimilarity in phytoplankton composition (R = 0.042, p = 0.771) but indicated a significant seasonal difference (R = 0.265, p = 0.001). Therefore, SIMPER analysis revealed that Lyngbya attenuata, Merismopedia tenuissima, Cyclotella sp., Merismopedia glauca, Merismopedia elegans, and Phormidium tenue contributed to the seasonal differences. Furthermore, CCA demonstrated that TP, TN, NH4+-N, COD, Chl-a, and Secchi depth greatly influenced the phytoplankton community. This study shows the spatio-temporal variation in water quality and phytoplankton communities, useful for managing riverine quality.


Assuntos
Diatomáceas , Fitoplâncton , Rios , Qualidade da Água , Monitoramento Ambiental , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...