Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35590885

RESUMO

The comprehensive production of detailed bathymetric maps is important for disaster prevention, resource exploration, safe navigation, marine salvage, and monitoring of marine organisms. However, owing to observation difficulties, the amount of data on the world's seabed topography is scarce. Therefore, it is essential to develop methods that effectively use the limited data. In this study, based on dictionary learning and sparse coding, we modified the super-resolution technique and applied it to seafloor topographical maps. Improving on the conventional method, before dictionary learning, we performed pre-processing to separate the teacher image into a low-frequency component that has a general structure and a high-frequency component that captures the detailed topographical features. We learn the topographical features by training the dictionary. As a result, the root-mean-square error (RMSE) was reduced by 30% compared with bicubic interpolation and accuracy was improved, especially in the rugged part of the terrain. The proposed method, which learns a dictionary to capture topographical features and reconstructs them using a dictionary, produces super-resolution with high interpretability.


Assuntos
Algoritmos , Aprendizagem , Oceanos e Mares
2.
Zoolog Sci ; 25(5): 517-25, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18558805

RESUMO

Crickets respond to air currents with quick avoidance behavior. The terminal abdominal ganglion (TAG) has a neuronal circuit for a wind-detection system to elicit this behavior. We investigated neuronal transmission from cercal sensory afferent neurons to ascending giant interneurons (GIs). Pharmacological treatment with 500 muM acetylcholine (ACh) increased neuronal activities of ascending interneurons with cell bodies located in the TAG. The effects of ACh antagonists on the activities of identified GIs were examined. The muscarinic ACh antagonist atropine at 3-mM concentration had no obvious effect on the activities of GIs 10-3, 10-2, or 9-3. On the other hand, a 3-mM concentration of the nicotinic ACh antagonist mecamylamine decreased spike firing of these interneurons. Immunohistochemistry using a polyclonal anti-conjugated acetylcholine antibody revealed the distribution of cholinergic neurons in the TAG. The cercal sensory afferent neurons running through the cercal nerve root showed cholinergic immunoreactivity, and the cholinergic immunoreactive region in the neuropil overlapped with the terminal arborizations of the cercal sensory afferent neurons. Cell bodies in the median region of the TAG also showed cholinergic immunoreactivity. This indicates that not only sensory afferent neurons but also other neurons that have cell bodies in the TAG could use ACh as a neurotransmitter.


Assuntos
Fibras Colinérgicas/fisiologia , Gryllidae/fisiologia , Interneurônios/citologia , Interneurônios/fisiologia , Mecanotransdução Celular/fisiologia , Neurônios Aferentes/fisiologia , Animais , Cistos Glanglionares , Neurônios Aferentes/citologia
3.
Biosystems ; 93(3): 218-25, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18550269

RESUMO

One prominent stimulus to evoke an escape response in crickets is the detection of air movement, such as would result from an attacking predator. Wind is detected by the cercal sensory system that consists of hundreds of sensory cells at the base of filiform hairs. These sensory cells relay information to about a dozen cercal giant and non-giant interneurons. The response of cercal sensory cells depends both, on the intensity and the direction of the wind. Spike trains of cercal giant interneurons then convey the information about wind direction and intensity to the central nervous system. Extracellular recording of multiple cercal giant interneurons shows that certain interneuron pairs fire synchronously if a wind comes from a particular direction. We demonstrate here that directional tuning curves of synchronously firing pairs of interneurons are sharper than those of single interneurons. Moreover, the sum total of all synchronously firing pairs eventually covers all wind directions. The sharpness of the tuning curves in synchronously firing pairs results from excitatory and inhibitory input from the cercal sensory neurons. Our results suggest, that synchronous firing of specific pairs of cercal giant interneurons encodes the wind direction. This was further supported by behavioral analyses.


Assuntos
Comportamento Animal/fisiologia , Gryllidae/citologia , Gryllidae/fisiologia , Interneurônios/fisiologia , Vento , Animais , Eletrofisiologia , Masculino , Percepção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...