Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(2): 221-233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884807

RESUMO

Targeting proximity-labeling enzymes to specific cellular locations is a viable strategy for profiling subcellular proteomes. Here, we generated transgenic mice (MAX-Tg) expressing a mitochondrial matrix-targeted ascorbate peroxidase. Comparative analysis of matrix proteomes from the muscle tissues showed differential enrichment of mitochondrial proteins. We found that reticulon 4-interacting protein 1 (RTN4IP1), also known as optic atrophy-10, is enriched in the mitochondrial matrix of muscle tissues and is an NADPH oxidoreductase. Interactome analysis and in vitro enzymatic assays revealed an essential role for RTN4IP1 in coenzyme Q (CoQ) biosynthesis by regulating the O-methylation activity of COQ3. Rtn4ip1-knockout myoblasts had markedly decreased CoQ9 levels and impaired cellular respiration. Furthermore, muscle-specific knockdown of dRtn4ip1 in flies resulted in impaired muscle function, which was reversed by dietary supplementation with soluble CoQ. Collectively, these results demonstrate that RTN4IP1 is a mitochondrial NAD(P)H oxidoreductase essential for supporting mitochondrial respiration activity in the muscle tissue.


Assuntos
Oxirredutases , Ubiquinona , Animais , Camundongos , Drosophila melanogaster , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma , Ubiquinona/metabolismo , Proteínas de Transporte
2.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119428, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610614

RESUMO

Peroxidase is a heme-containing enzyme that reduces hydrogen peroxide to water by extracting electron(s) from aromatic compounds via a sequential turnover reaction. This reaction can generate various aromatic radicals in the form of short-lived "spray" molecules. These can be either covalently attached to proximal proteins or polymerized via radical-radical coupling. Recent studies have shown that these peroxidase-generated radicals can be utilized as effective tools for spatial research in biological systems, including imaging studies aimed at the spatial localization of proteins using electron microscopy, spatial proteome mapping, and spatial sensing of metabolites (e.g., heme and hydrogen peroxide). This review may facilitate the wider utilization of these peroxidase-based methods for spatial discovery in cellular biology.


Assuntos
Peróxido de Hidrogênio , Peroxidases , Peroxidases/metabolismo , Heme/metabolismo , Biologia
3.
Anal Chem ; 94(43): 14869-14877, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265183

RESUMO

Reactive oxygen species (ROS) are endogenously generated in live cells and essential for cell signaling. However, excess ROS generation can cause oxidative damage to biomolecules, which are implicated in various human diseases, including aging. Here, we developed an in vivo hydrogen peroxide monitoring method using a genetically encodable peroxidase (APEX2)-based system. We confirmed that APEX2 is activated by endogenous H2O2 and generates phenoxyl radicals to produce biotinylated signals (i.e., biotin-phenol) and fluorescent signals (i.e., AmplexRed), which can be detected using a fluorescence microscope. We observed that all subcellular targeted APEX2s were activated by local H2O2 generation by menadione treatment. Among them, the endoplasmic reticulum lumen and lysosome-targeted APEX2 showed the highest response upon addition of menadione which implies that local H2O2 levels in those spaces are highly increased by menadione treatment. Using APEX2, we also found that a minimum amount of menadione (>10 µM) is required to generate detectable levels of H2O2 in all subcellular compartments. We also checked the local H2O2-quenching effect of N-acetylcysteine using our system. As APEX2 can be genetically expressed in diverse live organisms (e.g., cancer cell lines, mice, fly, worm, and yeast), our method can be effectively used to detect local generation of endogenously produced H2O2 in diverse live models.


Assuntos
Peróxido de Hidrogênio , Vitamina K 3 , Animais , Camundongos , Humanos , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vitamina K 3/farmacologia , Estresse Oxidativo , Fenol
4.
Nat Commun ; 12(1): 26, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397915

RESUMO

Mitochondrial oxidation-induced cell death, a physiological process triggered by various cancer therapeutics to induce oxidative stress on tumours, has been challenging to investigate owing to the difficulties in generating mitochondria-specific oxidative stress and monitoring mitochondrial responses simultaneously. Accordingly, to the best of our knowledge, the relationship between mitochondrial protein oxidation via oxidative stress and the subsequent cell death-related biological phenomena has not been defined. Here, we developed a multifunctional iridium(III) photosensitiser, Ir-OA, capable of inducing substantial mitochondrial oxidative stress and monitoring the corresponding change in viscosity, polarity, and morphology. Photoactivation of Ir-OA triggers chemical modifications in mitochondrial protein-crosslinking and oxidation (i.e., oxidative phosphorylation complexes and channel and translocase proteins), leading to microenvironment changes, such as increased microviscosity and depolarisation. These changes are strongly related to cell death by inducing mitochondrial swelling with excessive fission and fusion. We suggest a potential mechanism from mitochondrial oxidative stress to cell death based on proteomic analyses and phenomenological observations.


Assuntos
Irídio/farmacologia , Mitocôndrias/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Morte Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Transferência de Energia , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oxirredução/efeitos dos fármacos , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Viscosidade
5.
Chembiochem ; 21(7): 924-932, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794116

RESUMO

Studying protein-protein interactions (PPIs) is useful for understanding cellular functions and mechanisms. Evaluating these PPIs under conditions as similar as possible to native conditions can be achieved using photo-crosslinking methods because of their on-demand ability to generate reactive species in situ by irradiation with UV light. Various fusion tag, metabolic incorporation, and amber codon suppression approaches using various crosslinkers containing aryl azide, benzophenone, and diazirines have been applied in live cells. Mass spectrometry and immunological techniques are used to identify crosslinked proteins based on their capture transient and context-dependent interactions. Herein we discuss various incorporation methods and crosslinkers that have been used for interactome mapping in live cells.


Assuntos
Reagentes de Ligações Cruzadas/química , Proteínas/química , Raios Ultravioleta , Toxina da Cólera/química , Reagentes de Ligações Cruzadas/metabolismo , Diazometano/análogos & derivados , Diazometano/química , Humanos , Ligases/metabolismo , Lisina/análogos & derivados , Lisina/química , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
6.
Biochemistry ; 59(3): 250-259, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31657545

RESUMO

Determining the topology of the membrane proteome is fundamental for understanding its function at the membrane. However, conventional methods involving test tube reactions often lead to unreliable results, which do not accurately reflect membrane topology under physiological conditions, as perturbations occur during lysis. In this Perspective, we introduce a new method using engineered ascorbate peroxidase (APEX) for revealing membrane topological information in live cells without performing complicated sample preparation. We also discuss several examples of clearly resolved membrane topologies of various important mitochondrial proteins (e.g., LETM1, NDUFB10, MCU, SFXN1, and EXD2) and endoplasmic reticulum proteins (e.g., HMOX1) determined by using APEX-based methods.


Assuntos
Ascorbato Peroxidases/genética , Membrana Celular/química , Proteínas Mitocondriais/genética , Proteoma/genética , Ascorbato Peroxidases/química , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Membrana Celular/enzimologia , Membrana Celular/genética , Retículo Endoplasmático/genética , Exodesoxirribonucleases/genética , Células HEK293 , Heme Oxigenase-1/genética , Humanos , Proteínas de Membrana/genética , Proteínas Mitocondriais/química , NADH Desidrogenase/genética , Engenharia de Proteínas/métodos , Proteoma/classificação , Transportador 1 de Glucose-Sódio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...