Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 21(9): 4768-4772, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691864

RESUMO

In this study, microstructure and sintering behaviors of the gas-atomized Al-(25 or 30) Cr-xSi alloy (x = 5, 10 and 20 at.%) during spark plasma sintering (SPS) process were investigated. Gas-atomized alloy powders were manufactured using Ar gas atomizer process. These alloy powders were consolidated using SPS process at different temperature under pressure 60 MPa in vacuum. Microstructures of the gas-atomized powders and sintered alloys were analyzed using scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometer (EDS), and transmission electron microscopy (TEM). Hardness of the SPS sintered alloys was measured using micro Vickers hardness tester. The Al-Cr-Si bulks with high Cr and Si content were produced successfully using SPS sintering process without crack and obtained fully dense specimens close to nearly 100% T. D. (Theoretical Density). The maximum values of the hardness were 834 Hv for the sintered specimen of the gas atomized Al-30Cr-20Si alloy. Enhancement of hardness value was resulted from the formation of the multi-intermetallic compound with the hard and thermally stable phases and fine microstructure by the addition of high Cr and Si.

2.
J Nanosci Nanotechnol ; 21(9): 4897-4901, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691886

RESUMO

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al-Zn-Cu-Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al-Zn-Cu-Mg-xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.

3.
J Nanosci Nanotechnol ; 21(3): 1915-1919, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404468

RESUMO

Fe is considered as one of the most harmful trace elements among impurities in aluminum and its alloys due to its influence of the mechanical properties especially in elongation. It is therefore essential that the Fe content is controlled to improve quality and the toughness of aluminum alloy castings. Since demand for high strength aluminum alloy casting was significantly increased in electro materials and devices, automotive and airplane industries, it is necessary to characterize the effect of Fe and set the tolerable amount of Fe content in aluminum alloys. Al6061 alloys were prepared with compositions of 0.36, 0.45, 0.58, 0.65, 0.75, 0.81 and 0.91 wt.% Fe. Solidification characteristics were analyzed by CALPHAD (Pandat software) method. Mechanical properties such as hardness, tensile strength, elongation and fatigue strength were evaluated and compared with different Fe contents. Al13Fe4 phase increased with increasing as Fe content, however, other phases, α-AlFeSi and Mg2Si, showder a slight decrease. The higher the Fe content, the lower the electrical conductivity of the alloy due to the severe distortion of the Al matrix. As Fe content was more than specification of Al6061 alloy, 0.7 wt.%, the mechanical properties, especially, hardness and elongation were greatly influenced. The hardness is attributed to the poor densification and angular-shaped Al13Fe4 phases unevenly distributed in the α-Al matrix.

4.
J Nanosci Nanotechnol ; 21(3): 1984-1989, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404480

RESUMO

The effect of addition of Mischmetal (MM) on the microstructure, electrical and thermal conductivity, and mechanical properties of the as-extruded Al-MM based alloys were investigated. The studied AlxMM alloys (where x = 0.2, 0.5, 1.0, 1.5, 2.0 and 5.0 wt.%) were cast and homogenized at 550 °C for 4 h. The cast billets were extruded into 12 mm bars with an extrusion ratio of 39 at 550 °C. The addition of MM resulted in the formation of Al11(Ce, La)3 intermetallic compounds and the area fraction of these intermetallic compounds increased with an increase in the MM content. The Al11(Ce, La)3 phase, which was distributed in the as-cast alloys, was crushed into fine particles and arrayed along the extruded direction during the extrusion process. In particular, these intermetallic compounds in the extruded Al-5.0MM alloy were distributed with a wide-band structure due to the fragmentation of the eutectic phase with a lamellar structure. As the MM content increased from 1.0 wt.% to 5.0 wt.%, the average grain size decreased remarkably from 740 to 73 µm. This was due to formation of Al11(Ce, La)3 particles during the hot extrusion process, which promoted dynamic recrystallization and suppression of grain growth. The electrical and thermal conductivity of the extruded alloys containing up to 2.0 wt.% MM were around 60.5% IACS and 230 W/m · K, respectively. However, the electrical and thermal conductivity of the extruded alloy with 5.0 wt.% MM decreased to 55.4% IACS and 206 W/m · K, respectively. As the MM content increased from 1.0 wt.% to 5.0 wt.%, the ultimate tensile strength (UTS) was improved remarkably from 74 to 119 MPa which was attributed to the grain refinement and formation of Al11(Ce, La)3 intermetallic compounds by the addition of MM.

5.
J Nanosci Nanotechnol ; 21(3): 2015-2018, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404486

RESUMO

Microstructure and properties of Al-2 wt.%Zn-1 wt.%Cu-xMg (x = 0.1, 0.3, 0.5, 0.7 wt.%) alloy extrusion materials were investigated. The lattice constants for the (311) plane increased to 4.046858, 4.048483, 4.050114 and 4.051149 Å with the addition of 0.1, 0.3, 0.5, and 0.7 wt.% of elemental Mg. The average grain size of the as-extruded Al alloys was found to be 328.7, 297.7, 187.0 and 159.3 µm for the alloys with 0.1, 0.3, 0.5, and 0.7 wt.% Mg content, respectively. The changes in the electrical conductivity by the addition of elemental Mg in Al-2 wt.%Zn-1 wt.%Cu alloy was determined, and it was found that for the addition of 0.1, 0.3, 0.5, and 0.7 wt.% Mg, the conductivity decreased to 51.62, 49.74, 48.26 and 46.80 %IACS. The ultimate tensile strength of Al-2 wt.%Zn-1 wt.%Cu-0.7 wt.%Mg alloy extrusion was increased to 203.55 MPa. Thus, this study demonstrated the correlation between the electrical conductivity and strength for the Al-2 wt.%Zn-1 wt.%Cu-xMg alloys.

6.
J Nanosci Nanotechnol ; 20(7): 4216-4220, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968444

RESUMO

Thermal properties and microstructure of Al-4 wt.% Zn-2 wt.% Cu-x (x = 2 wt%. Mg, 2 wt%. Sn, 0.7 wt.% Mg-0.7 wt.% Sn-0.7 wt.% Ca) alloys on cast and extrusion have been investigated with extrusion temperature of 400 °C. Al-4 wt.% Zn-2 wt.% Cu alloy was composed of Al and Al2Cu phases. By adding Mg contents, Al2Mg3Zn3 phase was increased and Al2Cu phase was decreased respectively. During hot extrusion, elongated in the extrusion direction because of severe deformation. The thermal conductivity with temperature and composition of as-extruded Al-4 wt.% Zn-2 wt.% Cu-x alloys decreases with adding 2 wt.% Mg, 2 wt.% Sn contents from 190.925 and 196.451 W/mK but thermal properties of addition of 0.7 wt.% Mg-0.7 wt.% Sn-0.7 wt.% Ca element slightly reduced from 222.32 to 180.775 W/mK. The ultimate tensile strength (UTS) for Al-4 wt.% Zn- 2 wt.% Cu alloy was 121.67 MPa. By adding 2 wt.% Mg contents, tensile strength was dramatically increased with 350.5 MPa.

7.
J Nanosci Nanotechnol ; 20(7): 4248-4252, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968451

RESUMO

In this research, effects of Zn and Cu content on microstructure, mechanical properties, electric and thermal conductivity of the as-extruded Al-x(Zn+0.5Cu) alloys were investigated. As the content of Zn and Cu increased, the area ratio of Al2Cu intermetallic compounds increased. After homogenization treatment and extrusion process, most of Al2Cu intermetallic compounds was disappeared due to solution in Al matrix of Cu atoms. As the (Zn+0.5Cu) content increased from 1 to 2 wt.%, the average grain size decreased remarkably from 645 to 227 µm due to the dynamic recrystallization caused by the solute Zn and Cu atoms during the extrusion. With increasing Zn and Cu additions, the thermal conductivity was decreased from 225 (x = 1) to 208 (x = 2) and 183 W/mK (x = 4) due to electric scattering by solute Zn and Cu atoms. The ultimate tensile strength (UTS) of the as-extruded Al-x(1Zn+0.5Cu) alloys improved remarkably from 77 (x = 1) to 142 MPa (x = 4) as Zn and Cu content increased, and the elongation increased from 30 to 33%. This improvement in the strength resulted from the grain refinement and solid solution strengthening due to the solute Zn and Cu atoms. The Zn and Cu addition in Al alloy played an important role in thermal conductivity and mechanical properties.

8.
J Nanosci Nanotechnol ; 20(7): 4307-4311, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968463

RESUMO

High conductivity Al alloys are widely used for electric materials, heat exchangers, and heat dissipation parts such as electric conductors, transmission lines, communication cables, automobile wires and so on. In this study, the effects of Ca and Mn addition on the microstructure and mechanical properties of Al-0.3Cu-0.2Fe-0.15Si-0.15Zn alloys were investigated. The melt was held at 800 °C for 20 minutes and poured into a mold. The cast Al alloy was hot extruded with a rod having a diameter of 12 mm and a reduction ratio of 38:1. Al-0.3Cu-0.2Fe-0.15Si-0.15Zn-0.9Mn-0.4Ca alloy consists of Al, Al-(Fe, Mn)-Si, Al-(Fe, Mn) and Al-(Ca) intermetallic compounds. The formation of the intermetallic compound and this phase was broken in to small particles during extrusion. As the Ca content increased from 0 to 0.4 wt.%, the electrical conductivity of the extruded Al-0.3Cu- 0.2Fe-0.15Si-0.15Zn alloys increased by 57.3, 57.9 and 59.0 %IACS (International annealed copper standard). Al-0.3Cu-0.2Fe-0.15Si-0.15Zn-0.9Mn alloy with element additions of Ca, ultimate tensile strength was decreased from 178.3 to 163.2 and 151.8 MPa. However, the elongation was improved to 18.6, 21.6 and 23.15%.

9.
J Nanosci Nanotechnol ; 20(7): 4509-4512, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968508

RESUMO

The hot deformation characteristics of an UNS No. S32205 grade duplex stainless steel with nitrogen content of 0.17 ms% was studied over the ranges of temperature from 800 to 1200 °C and strain rates from 0.001 to 1.0 s-1 at the total strain of 0.5 by the hot compression test to draw the processing map. The obtained map was discussed in combinations of microstructural observations and TEM analysis. The optimum hot working region is the temperatures from 950 to 1200 °C regardless of the strain rates without cracks and sigma precipitates.

10.
J Nanosci Nanotechnol ; 20(1): 293-297, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383169

RESUMO

In this study, we investigated the effect of Mg addition (0, 0.5, and 1.0 wt%) on the microstructure, mechanical properties, and thermal conductivity of as-extruded Al-RE alloys. With an increase in the Mg content from 0 to 1.0 wt%, the average grain size of the alloys decreased remarkably from 740 to 130 µm and the high-angle grain boundary fraction increased from 35 to 54%. The addition of Mg resulted in the grain refinement of the Al-1.0RE alloy because of the dynamic recrystallization caused by the solute Mg atoms during the extrusion. With an increase in the Mg content from 0.5 to 1.0 wt%, thermal conductivity of the alloy decreased from 231 to 193 W/mK because of the electric scattering caused by the solute Mg atoms. With an increase in the Mg content from 0 to 1.0 wt%, the ultimate tensile strength of the alloy increased remarkably from 74 to 120 MPa, while the strain reduced from 44 to 34%. This improvement in the strength resulted from the grain refinement and solid solution strengthening due to the solute Mg atoms. The Mg addition amount affected the thermal conductivity and strength of the alloys significantly.

11.
J Nanosci Nanotechnol ; 20(1): 530-534, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383205

RESUMO

In this study, we investigate the microstructure and mechanical properties of as-extruded Al-1.0RE alloys. The molten Aluminum alloy was maintained at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod measuring 12 mm thick with a reduction ratio of 38:1. The microstructure and electric conductivity properties of as-extruded Al-1.0RE alloy under different annealing processes were investigated and compared. After extrusion, the intermetallic compound having a needle shape in the cast state was finely decomposed based on the direction of extrusion. Significant changes in the microstructure were detected after annealing at 500 °C with fragmentation and sphering of eutectic particles. The annealing temperature of Al-1.0RE alloy increased proportionally to the electrical conductivity. The formation of Al-RE intermetallic compounds increases the electrical conductivity and improves the mechanical properties of the alloy through precipitation hardening.

12.
J Nanosci Nanotechnol ; 20(1): 535-539, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383206

RESUMO

Aluminum and its alloys are used in a wide range of industrial applications from low density, high strength and a variety of structural materials. In this study, the effects of Ca addition on the microstructure and mechanical properties of Al-1wt.%RE alloys were investigated. The melt was held at 800 °C for 20 minutes and poured into a mold. The cast Al alloy was hot extruded with a rod having a diameter of 12 mm and a reduction ratio of 38:1. Al-1wt.%RE alloy consists of Al, Al11RE3 phase. The Al2Ca phase is increased by increasing the Ca content to 0.2 to 0.4 wt.%. As the Ca content increased from 0 to 0.4 wt.%, the average grain size of the extruded Al alloy decreased by 739.8, 400.8 and 155.0 µm. The tensile strengths were increased to 74.25, 76.53, and 79.52 MPa. The electrical conductivity of Al-RE alloy with Ca addition decreased to 60.32, 58.15 and 57.89% IACS.

13.
J Nanosci Nanotechnol ; 19(4): 2236-2239, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30486975

RESUMO

Microstructure and texture of P-type 75%Sb2Te3-25%Bi2Te3 alloy fabricated by using gas-atomization and extrusion processes was investigated. The microstructure of the gas-atomized powders exhibited fine grains with needle shape. After hot extrusion, grain size was characterized by fine and equiaxed grains due to dynamic recrystallization by severe deformation. (0001) basal planes of the extruded specimens were preferentially orientated parallel to extrusion direction. As extrusion temperature, fraction of the basal planes was increased.

14.
J Nanosci Nanotechnol ; 19(4): 2314-2318, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30486990

RESUMO

In this work, Al-0.15Si-0.2Fe-0.3Cu-0.9Mn alloys with different Zn addition (0, 0.15 and 0.3 wt%) were melted and extruded at 200 °C. The effect of Zn on the microstructure, texture evolution and mechanical properties of Al-0.15Si-0.2Fe-0.3Cu-0.9Mn alloys was investigated using scanning electron microscope (SEM), equipped with energy-dispersive X-ray spectrometry (EDS) and electron backscatter diffraction (EBSD) and in the present study. In order to evaluate the mechanical properties, we implemented the tensile tests by a universal material test machine. Al-0.15Si-0.2Fe- 0.3Cu-0.9Mn-xZ resulted in the formation of Al-(Fe, Mn)-Si and Al-(Fe, Mn) intermetallic compounds. The formation of the intermetallic compound and this phase was broken in to small particles during extrusion. The ultimate strength and elongation of the as-extruded Al-0.15Si-0.2Fe-0.3Cu- 0.9Mn alloy were 96.51 MPa and 34.01%, while those of the Al-0.15Si-0.2Fe-0.3Cu-0.9Mn-0.3Zn alloy were 99.08 MPa and 36.21%, respectively. Al-0.15Si-0.2Fe-0.3Cu-0.9Mn alloys with Zn addition resulted in improving the strength with no reduction in elongation.

15.
J Nanosci Nanotechnol ; 19(4): 2404-2406, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30487009

RESUMO

Niobium-titanium alloy is attractive materials for industrials as a superconducting magnets to high critical magnetic field and supercurrent density at -283 °C. The Nb-Ti alloy has been shown in earlier work to exhibit Van Gosh Sky microstructures. They may also be accentuated by plastic deformation due to work and temperature exposure during deformation. In order to miniaturize the magnet generating the same magnetic field, it is necessary to increase the critical current density of the superconducting wire. When fabricating superconducting wires, it is important to increase critical current density by optimizing processing and annealing conditions. When the α-phase of the Ti rich phase is uniformly precipitated by the heat treatment, the non-superconducting α-phase is dispersed in the superconducting Nb-Ti matrix. It becomes a pinning point that serves to fix the magnetic flux, which improves the critical current density. Also, if the shape of the precipitate is changed by machining, the superconducting and non-superconducting characteristics are further improved. In the present study, we studied the fraction of α-Ti phase of strain amount through groove rolling and heat treatment. The specimens were processed by groove rolling at room temperature and strain of 2.0, 3.16, 4.28 and 5.57. A microstructural analysis of the Nb-Ti alloys was performed by field emission scanning electron microscopy (FESEM).

16.
J Nanosci Nanotechnol ; 18(9): 6249-6252, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677775

RESUMO

The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

17.
J Nanosci Nanotechnol ; 18(9): 6304-6308, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677786

RESUMO

Magnesium and its alloys are potential candidates for many automotive and aerospace applications due to their low density and high specific strength. However, the use of magnesium as wrought products is limited because of its poor workability at ambient temperatures. Mg-Li alloys containing 5-11 wt.% Li exhibit a two-phase structure consisting of a α (hcp) Mg-rich phase and a ß (bcc) Li-rich phase. Mg-Li alloys with Li content greater than 11 wt.% exhibit a single-phase structure consisting of only the ß phase. In the present study, we studied the effects of Y addition on the microstructure and mechanical properties of Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca based alloys. The melt was maintained at 720 °C for 20 min and poured into a mold. Then, the as-cast Mg alloys were homogenized at 350 °C for 4 h and were hot-extruded onto a 4-mm-thick plate with a reduction ratio of 14:1. The as-cast Mg-11Li-6Zn-0.6Zr-0.4Ag-0.2Ca-xY (x 0, 1, 3, and 5 wt.%) alloys were composed of α-Mg, ß-Li, γ-Mg2Zn3Li, I-Mg3YZn6, W-Mg3Y2Zn3, and X-Mg12YZn phases. By increasing the Y content from 0 to 5 wt.%, the composition of the W-Mg3Y2Zn3 phase increased. With increasing Y content, from 0 to 1, 3, and 5 wt.%, the average grain size and ultimate tensile of the as-extruded Mg alloys decreased slightly, from 8.4, to 3.62, 3.56, and 3.44 µm and from 228.92 to 215.57, 187.47, and 161.04 MPa, respectively, at room temperature.

18.
J Nanosci Nanotechnol ; 18(3): 1948-1952, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448690

RESUMO

Accumulative roll-bonding (ARB) is the most appropriate process for sheet-shaped materials because it can be carried out readily by utilizing the conventional rolling apparatus. In this study, a nanostructured AA1050/AA5052 Al alloy sheet was successfully fabricated by four-layer stack ARB process. The ARB of AA1050 and AA5052 alloy sheets was performed up to 6 cycles without a lubricant at ambient temperature. The sample fabricated by the ARB was a multi-layer aluminum alloy sheet in which AA1050 and AA5052 layers are alternately stacked. The layer thickness of the each alloy became thinner and elongated to the rolling direction with the number of ARB cycles. The grain size decreased with increasing of the number of ARB cycles, after 6 cycles it became about 180 nm in thickness. The fraction of high angle grain boundaries increased with the number of ARB cycles. The tensile strength also increased with the ARB, it reached 305 MPa which is about 2.1 times that of the as-received AA1050. The mechanical properties of a multi-layer AA1050/AA5052 alloy fabricated by the ARB were compared to those of the other materials.

19.
J Nanosci Nanotechnol ; 18(3): 1953-1957, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448691

RESUMO

We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

20.
J Nanosci Nanotechnol ; 18(3): 2063-2067, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448713

RESUMO

Aluminum and its alloys, due to their low density, high specific strength and high corrosion resistance amongst various structural materials, are used in a wide range of industrial applications for different aqueous solutions. In the present study, we studied effects of Ce addition on microstructure and mechanical properties of Al-2Li-1Cu-0.8Mg-0.1Zr alloys. The melt was held at 780 °C for 20 min and poured into a mold. And as-cast Al alloys were hot-extruded into a plate that was 4 mm in thickness with a reduction ratio of 14:1. The extruded plates were held at 540 °C for 4 hr in water quenching to solution treatment them. As-extruded Al-2Li-1Cu-0.8Mg-0.1Zr-xCe (x = 0.3, 0.6, 0.9 and 1.2 wt.%) alloys are composed of Al, AlLi, AlCuLi and Al11Ce3 phases. By increasing the Ce content from 0 to 1.2 wt.%, the Al11Ce3 phase is increased, after solution treatment the AlLi and AlCuLi phases are decreased. With increasing Ce addition from 0 to 1.2 wt.%, the average grain size of the as-extruded Al alloys were decreased slightly from 100.7, 113.74, 84.3, 74.7 and 61.7 µm and ultimate tensile strength was decreased slightly from 267.59, 264.92, 237.40, 220.93 and 207.83 MPa at room temperature. After solution treatment, ultimate tensile strength was measured with 205.13, 198.12, 195.50, 198.27 and 208.01 MPa at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...