Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(37): 44531-44540, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34505504

RESUMO

We proposed a novel material named sodium hypochlorite (NaClO) solution as a source of activation for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). We reduced the activation temperature from 300 to 150 °C using NaClO solution (concentration: 50%) and obtained satisfactory electrical characteristics of a-IGZO TFTs. The field-effect mobility, threshold voltage, on/off ratio, subthreshold swing, and threshold voltage (Vth) shift under negative bias illumination stress (VG = -20 V and VD = 10.1 V for 10,000 s) of NaClO (50%)-activated a-IGZO TFTs were 10.41 cm2/V·s, 1.51 V, 2.78 × 108, 0.37 V/dec, and -5.43 V, respectively. Also, the Vth shifts of the NaClO (50%)-activated a-IGZO TFTs (150 °C) under the positive bias stress test decreased from 5.01 to 1.87 V (VG = 20 V and VD = 10.1 V for 10,000 s) compared with that of only-annealed (300 °C) a-IGZO TFTs. Also, the mechanism of NaClO activation for a-IGZO TFTs is clarified through photo-assisted oxygen radical (POR) and heat-driven oxygen radical (HOR) effects. The POR and HOR effects generated the reactive oxygen species (ROS) from NaClO solution (50%), which activated a-IGZO TFTs at a low temperature (150 °C). When the NaClO solution (50%) was exposed to external energy, it generated ROS such as hydroxyl radicals (OH•), hydroperoxyl radicals (HO2•), and oxygen radicals (O•), which promoted the formation of strong metal-oxide bonds in a-IGZO TFTs. Furthermore, NaClO solution (50%) was applied to a-IGZO TFTs on a flexible polyimide substrate and electrohydrodynamic printing process for selective deposition.

2.
ACS Appl Mater Interfaces ; 13(27): 31816-31824, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34180652

RESUMO

In this study, the oxygen scavenger layer (OSL) is proposed as a back channel in the bilayer channel to enhance both the electrical characteristics and stability of an amorphous indium-gallium-zinc oxide thin-film transistor (a-IGZO TFT) and also to enable its fabrication at low temperature. The OSL is a hafnium (Hf)-doped a-IGZO channel layer deposited by radio-frequency magnetron cosputtering. Amorphous IGZO TFTs with the OSL, even if annealed at a low temperature (200 °C), exhibited improved electrical characteristics and stability under positive bias temperature stress (PBTS) compared to those without the OSL, specifically in terms of field-effect mobility (31.08 vs 9.25 cm2/V s), on/off current ratio (1.73 × 1010 vs 8.68 × 108), and subthreshold swing (0.32 vs 0.43 V/decade). The threshold voltage shift under PBTS at 50 °C for 10,000 s decreased from 9.22 to 2.31 V. These enhancements are attributed to Hf in the OSL, which absorbs oxygen ions from the a-IGZO front channel near the interface between a-IGZO and the OSL.

3.
Adv Mater ; 33(47): e2006091, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34048086

RESUMO

Metal oxide thin-film transistors have been continuously researched and mass-produced in the display industry. However, their phototransistors are still in their infancy. In particular, utilizing metal oxide semiconductors as phototransistors is difficult because of the limited light absorption wavelength range and persistent photocurrent (PPC) phenomenon. Numerous studies have attempted to improve the detectable light wavelength range and the PPC phenomenon. Here, recent studies on metal oxide phototransistors are reviewed, which have improved the range of light wavelengths and the PPC phenomenon by introducing an absorption layer of oxide or non-oxide hybrid structure. The materials of the absorption layer applied to absorb long-wavelength light are classified into oxides, chalcogenides, organic materials, perovskites, and nanodots. Finally, next-generation convergence studies combined with other research fields are introduced and future research directions are detailed.

4.
ACS Appl Mater Interfaces ; 13(17): 20349-20360, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33818057

RESUMO

In this study, the excellent hydrogen barrier properties of the atomic-layer-deposition-grown Al2O3 (ALD Al2O3) are first reported for improving the stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). Chemical species in Al2O3 were artificially modulated during the ALD process using different oxidants, such as H2O and O3 (H2O-Al2O3 and O3-Al2O3, respectively). When hydrogen was incorporated into the H2O-Al2O3-passivated TFT, a large negative shift in Vth (ca. -12 V) was observed. In contrast, when hydrogen was incorporated into the O3-Al2O3-passivated TFT, there was a negligible shift in Vth (ca. -0.66 V), which indicates that the O3-Al2O3 has a remarkable hydrogen barrier property. We presented a mechanism for trapping hydrogen in a O3-Al2O3 via various chemical and electrical analyses and revealed that hydrogen molecules were trapped by C-O bonds in the O3-Al2O3, preventing the inflow of hydrogen to the a-IGZO. Additionally, to minimize the deterioration of the pristine device that occurs after a barrier deposition, a bi-layered hydrogen barrier by stacking H2O- and O3-Al2O3 is adopted. Such a barrier can provide ultrastable performance without degradation. Therefore, we envisioned that the excellent hydrogen barrier suggested in this paper can provide the possibility of improving the stability of devices in various fields by effectively blocking hydrogen inflows.

5.
ACS Appl Mater Interfaces ; 13(3): 4110-4116, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33448781

RESUMO

We investigated a facile fabrication method, which is an insertion of a carrier-induced interlayer (CII) between the oxygen-rich a-IGZO channel and the gate insulator to improve the electrical characteristics and stability of amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs). The a-IGZO channel is deposited with additional oxygen gas flow during a-IGZO channel deposition to improve the stability of the a-IGZO TFTs. The CII is a less than 10 nm thick deposited thin film that acts to absorb the oxygen from the a-IGZO front channel through oxidation. Through oxidation of the CII, the oxygen concentration of the a-IGZO front channel is decreased compared to that of the oxygen-rich back channel, which forms a vertically graded oxygen deficiency (VGO) in the a-IGZO channel. Therefore, the electrical characteristics of the VGO TFTs are improved by increasing the carrier concentration of the front channel as the oxygen vacancy concentration in the front channel is increased through the oxidation of the CII. At the same time, the stability of the VGO TFTs is improved by maintaining a high oxygen concentration in the back channel even after oxidation of the CII. The field-effect mobility (µFET) of the VGO TFTs improved compared to that of the a-IGZO TFTs from 7.16 ± 0.6 to 12.0 ± 0.7 cm2/V·s. The threshold voltage (Vth) shifts under positive bias temperature stress and negative bias temperature illumination stress decreased from 6.00 to 2.95 V and -15.58 to -8.99 V, respectively.

6.
ACS Appl Mater Interfaces ; 12(16): 19123-19129, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32227838

RESUMO

Amorphous indium-gallium-zinc oxide (a-IGZO) films, which are widely regarded as a promising material for the channel layer in thin-film transistors (TFTs), require a relatively high thermal annealing temperature to achieve switching characteristics through the formation of metal-oxygen (M-O) bonding (i.e., the activation process). The activation process is usually carried out at a temperature above 300 °C; however, achieving activation at lower temperatures is essential for realizing flexible display technologies. Here, a facile, low-cost, and novel technique using cellophane tape for the activation of a-IGZO films at a low annealing temperature is reported. In terms of mechanochemistry, mechanical pulling of the cellophane tape induces reactive radicals on the a-IGZO film surface, which can give rise to improvements in the properties of the a-IGZO films, leading to an increase in the number of M-O bonds and the carrier concentration via radical reactions, even at 200 °C. As a result, the a-IGZO TFTs, compared to conventionally annealed a-IGZO TFTs, exhibited improved electrical performances, such as mobility, on/off current ratio, and threshold voltage shift (under positive bias temperature and negative bias temperature stress for 10,000 s at 50 °C) from 8.25 to 12.81 cm2/(V·s), 2.85 × 107 to 1.21 × 108, 6.81 to 3.24 V, and -6.68 to -4.93 V, respectively.

7.
ACS Appl Mater Interfaces ; 12(9): 10673-10680, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32052953

RESUMO

Visible light can be detected using an indium-gallium-zinc oxide (IGZO)-based phototransistor, with a selenium capping layer (SCL) that functions as a visible light absorption layer. Selenium (Se) exhibits photoconductive properties as its conductivity increases with illumination. We report an IGZO phototransistor with an SCL (SCL/IGZO phototransistor) that demonstrated optimal photoresponse characteristics when the SCL was 150 nm thick. The SCL/IGZO phototransistor exhibited a photoresponsivity of 1.39 × 103 A/W, photosensitivity of 4.39 × 109, detectivity of 3.44 × 1013 Jones, and external quantum efficiency of 3.52 × 103% when illuminated by green light (532 nm). Ultraviolet-visible spectroscopy and ultraviolet photoelectron spectroscopy analysis showed that Se has a narrow energy band gap, in which visible light is absorbed and forms a p-n junction with IGZO so that photogenerated electron-hole pairs are easily separated, which makes recombination more challenging. We show that electrons generated in the SCL flow through the IGZO layer, which enables the phototransistor to detect visible light. Furthermore, the SCL/IGZO phototransistor exhibited excellent durability and reversibility owing to the constant light and dark current and the time-dependent photoresponse characteristics over 8000 s when a red light (635 nm) source was turned on and off at a frequency of 0.1 Hz.

8.
Adv Mater ; 30(26): e1800722, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29761552

RESUMO

Resistive random access memory (RRAM) devices are fabricated through a simple solution process using glucose, which is a natural biomaterial for the switching layer of RRAM. The fabricated glucose-based RRAM device shows nonvolatile bipolar resistive switching behavior, with a switching window of 103 . In addition, the endurance and data retention capability of glucose-based RRAM exhibit stable characteristics up to 100 consecutive cycles and 104 s under constant voltage stress at 0.3 V. The interface between the top electrode and the glucose film is carefully investigated to demonstrate the bipolar switching mechanism of the glucose-based RRAM device. The glucose based-RRAM is also evaluated on a polyimide film to verify the possibility of a flexible platform. Additionally, a cross-bar array structure with a magnesium electrode is prepared on various substrates to assess the degradability and biocompatibility for the implantable bioelectronic devices, which are harmless and nontoxic to the human body. It is expected that this research can provide meaningful insights for developing the future bioelectronic devices.


Assuntos
Eletrodos , Glucose/química , Eletricidade
9.
Sci Rep ; 8(1): 5546, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615757

RESUMO

We fabricated wire-type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) using a self-formed cracked template based on a lift-off process. The electrical characteristics of wire-type IGZO TFTs could be controlled by changing the width and density of IGZO wires through varying the coating conditions of template solution or multi-stacking additional layers. The fabricated wire-type devices were applied to sensors after functionalizing the surface. The wire-type pH sensor showed a sensitivity of 45.4 mV/pH, and this value was an improved sensitivity compared with that of the film-type device (27.6 mV/pH). Similarly, when the wire-type device was used as a glucose sensor, it showed more variation in electrical characteristics than the film-type device. The improved sensing properties resulted from the large surface area of the wire-type device compared with that of the film-type device. In addition, we fabricated wire-type IGZO TFTs on flexible substrates and confirmed that such structures were very resistant to mechanical stresses at a bending radius of 10 mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...