Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(22): 9151-9158, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758019

RESUMO

Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are located in the outer membrane of Gram-negative bacteria and are comprised of three distinctive parts: lipid A, core oligosaccharide (OS), and O-antigen. The structure of each region influences bacterial stability, toxicity, and pathogenesis. Here, we highlight the use of targeted activated-electron photodetachment (a-EPD) tandem mass spectrometry to characterize LPS and LOS from two crucial players in the human gut microbiota, Escherichia coli Nissle and Bacteroides fragilis. a-EPD is a hybrid activation method that uses ultraviolet photoirradiation to generate charge-reduced radical ions followed by collisional activation to produce informative fragmentation patterns. We benchmark the a-EPD method for top-down characterization of triacyl LOS from E. coli R2, then focus on characterization of LPS from E. coli Nissle and B. fragilis. Notably, a-EPD affords extensive fragmentation throughout the backbone of the core OS and O-antigen regions of LPS from E. coli Nissle. This hybrid approach facilitated the elucidation of structural details for LPS from B. fragilis, revealing a putative hexuronic acid (HexA) conjugated to lipid A.


Assuntos
Escherichia coli , Lipopolissacarídeos , Lipopolissacarídeos/química , Escherichia coli/química , Bacteroides fragilis/química , Elétrons , Espectrometria de Massas em Tandem
2.
Exp Mol Med ; 55(9): 1905-1912, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37696893

RESUMO

The mammalian gut is the most densely colonized organ by microbial species, which are in constant contact with the host throughout life. Hosts have developed multifaceted cellular and molecular mechanisms to distinguish and respond to benign and pathogenic bacteria. In addition to relatively well-characterized innate and adaptive immune cells, a growing body of evidence shows additional important players in gut mucosal immunity. Among them, unconventional immune cells, including innate lymphoid cells (ILCs) and unconventional T cells, are essential for maintaining homeostasis. These cells rapidly respond to bacterial signals and bridge the innate immunity and adaptive immunity in the mucosal barrier. Here, we focus on the types and roles of these immune cells in physiological and pathological conditions as prominent mechanisms by which the host immune system communicates with the gut microbiota in health and diseases.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Imunidade Inata , Mucosa Intestinal/microbiologia , Linfócitos , Bactérias , Imunidade nas Mucosas , Mamíferos
3.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37293019

RESUMO

Bioactive metabolites produced by symbiotic microbiota causally impact host health and disease, nonetheless, incomplete functional annotation of genes as well as complexities and dynamic nature of microbiota make understanding species-level contribution in production and actions difficult. Alpha-galactosylceramides produced by Bacteroides fragilis (BfaGC) are one of the first modulators of colonic immune development, but biosynthetic pathways and the significance of the single species in the symbiont community still remained elusive. To address these questions at the microbiota level, we have investigated the lipidomic profiles of prominent gut symbionts and the metagenome-level landscape of responsible gene signatures in the human gut. We first elucidated the chemical diversity of sphingolipid biosynthesis pathways of major bacterial species. In addition to commonly shared ceramide backbone synthases showing two distinct intermediates, alpha-galactosyltransferase (agcT), the necessary and sufficient component for BfaGC production and host colonic type I natural killer T (NKT) cell regulation by B. fragilis, was characterized by forward-genetics based targeted metabolomic screenings. Phylogenetic analysis of agcT in human gut symbionts revealed that only a few ceramide producers have agcT and hence can produce aGCs, on the other hand, structurally conserved homologues of agcT are widely distributed among species lacking ceramides. Among them, alpha-glucosyl-diacylglycerol(aGlcDAG)-producing glycosyltransferases with conserved GT4-GT1 domains are one of the most prominent homologs in gut microbiota, represented by Enterococcus bgsB . Of interest, aGlcDAGs produced by bgsB can antagonize BfaGC-mediated activation of NKT cells, showing the opposite, lipid structure-specific actions to regulate host immune responses. Further metagenomic analysis of multiple human cohorts uncovered that the agcT gene signature is almost exclusively contributed by B. fragilis , regardless of age, geographical and health status, where the bgsB signature is contributed by >100 species, of which abundance of individual microbes is highly variable. Our results collectively showcase the diversities of gut microbiota producing biologically relevant metabolites in multiple layers-biosynthetic pathways, host immunomodulatory functions and microbiome-level landscapes in the host.

4.
Gut Microbes ; 15(1): 2201154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37069732

RESUMO

Symbiotic microbiota critically contribute to host immune homeostasis in effector cell-specific manner. For exclusion of microbial component, germ-free animals have been the gold standard method. However, total removal of the entire gut microbiota of an animal from birth significantly skews physiological development. On the other hand, removal of gut microbiota from conventional mice using oral antibiotics has its own limitations, especially lack of consistency and the requirement for long-term treatment period. Here, we introduce an improved regimen to quickly remove gut microbiota and to maintain sterility, that is well received by animals without refusal. Rapid and consistent exclusion of resident bacteria in the gut lumen revealed kinetic differences among colonic lymphocyte subsets, which cannot be observed with typical germ-free animal models. Furthermore, the proposed method distinguished the mechanism of microbiota contribution as a direct stimulus to capable effector cells and a homeostatic cue to maintain such cell types.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbiota/fisiologia , Colo , Bactérias/genética , Bactérias/metabolismo , Homeostase
6.
Mol Microbiol ; 117(2): 539-550, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927290

RESUMO

σR (SigR) is an alternative sigma factor that enables gene expression in Streptomyces coelicolor to cope with thiol oxidation and antibiotic stresses. Its activity is repressed by a zinc-containing anti-sigma (ZAS) factor RsrA that senses thiol oxidants and electrophiles. Inactivation of RsrA by disulfide formation has been well studied. Here we investigated another pathway of RsrA inactivation by electrophiles. Mass spectrometry revealed alkylation of RsrA in vivo by N-ethylmaleimide (NEM) at C61 and C62 located in the C-terminal loop. Substitution mutation (C61S/C62S) in RsrA decreased the induction of σR target genes by electrophiles and made cells more sensitive to electrophiles. In contrast to stable protein of oxidized RsrA, alkylated RsrA is subjected to degradation partly mediated by ClpP proteases. RsrA2, a redox-sensitive homolog of RsrA in S. coelicolor lacking cysteine in the terminal loop, did not respond to electrophiles. However, redox-sensitive RsrA homologs in other Actinobacteria also harboring terminal loop cysteines all responded to electrophiles. These results indicate that the activity of RsrA can be modulated via cysteine alkylation, apart from disulfide formation of zinc-coordinating cysteines. This pathway expands the spectrum of signals that the σR -RsrA system can sense and reveals another intricate regulatory layer for optimal survival of Actinobacteria.


Assuntos
Actinobacteria , Fator sigma , Actinobacteria/genética , Alquilação , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Oxirredução , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo
7.
Nature ; 600(7888): 302-307, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34759313

RESUMO

Small molecules derived from symbiotic microbiota critically contribute to intestinal immune maturation and regulation1. However, little is known about the molecular mechanisms that control immune development in the host-microbiota environment. Here, using a targeted lipidomic analysis and synthetic approach, we carried out a multifaceted investigation of immunomodulatory α-galactosylceramides from the human symbiont Bacteroides fragilis (BfaGCs). The characteristic terminal branching of BfaGCs is the result of incorporation of branched-chain amino acids taken up in the host gut by B. fragilis. A B. fragilis knockout strain that cannot metabolize branched-chain amino acids showed reduced branching in BfaGCs, and mice monocolonized with this mutant strain had impaired colonic natural killer T (NKT) cell regulation, implying structure-specific immunomodulatory activity. The sphinganine chain branching of BfaGCs is a critical determinant of NKT cell activation, which induces specific immunomodulatory gene expression signatures and effector functions. Co-crystal structure and affinity analyses of CD1d-BfaGC-NKT cell receptor complexes confirmed the interaction of BfaGCs as CD1d-restricted ligands. We present a structural and molecular-level paradigm of immunomodulatory control by interactions of endobiotic metabolites with diet, microbiota and the immune system.


Assuntos
Aminoácidos de Cadeia Ramificada/imunologia , Aminoácidos de Cadeia Ramificada/metabolismo , Bacteroides fragilis/metabolismo , Galactosilceramidas/imunologia , Galactosilceramidas/metabolismo , Microbioma Gastrointestinal/imunologia , Simbiose/imunologia , Aminoácidos de Cadeia Ramificada/química , Animais , Antígenos CD1d/imunologia , Bacteroides fragilis/genética , Humanos , Camundongos , Modelos Animais , Modelos Moleculares , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia
8.
mBio ; 11(2)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291305

RESUMO

Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics.IMPORTANCE The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/genética , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/genética , Fatores de Transcrição/genética , Farmacorresistência Bacteriana Múltipla , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Regulon , Ribossomos/química
9.
Front Microbiol ; 8: 139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28210250

RESUMO

Bacteria in natural habitats are exposed to myriad redox-active compounds (RACs), which include producers of reactive oxygen species (ROS) and reactive electrophile species (RES) that alkylate or oxidize thiols. RACs can induce oxidative stress in cells and activate response pathways by modulating the activity of sensitive regulators. However, the effect of a certain compound on the cell has been investigated primarily with respect to a specific regulatory pathway. Since a single compound can exert multiple chemical effects in the cell, its effect can be better understood by time-course monitoring of multiple sensitive regulatory pathways that the compound induces. We investigated the effect of representative RACs by monitoring the activity of three sensor-regulators in the model actinobacterium Streptomyces coelicolor; SoxR that senses reactive compounds directly through oxidation of its [2Fe-2S] cluster, CatR/PerR that senses peroxides through bound iron, and an anti-sigma factor RsrA that senses RES via disulfide formation. The time course and magnitude of induction of their target transcripts were monitored to predict the chemical activities of each compound in S. coelicolor. Phenazine methosulfate (PMS) was found to be an effective RAC that directly activated SoxR and an effective ROS-producer that induced CatR/PerR with little thiol-perturbing activity. p-Benzoquinone was an effective RAC that directly activated SoxR, with slower ROS-producing activity, and an effective RES that induced the RsrA-SigR system. Plumbagin was an effective RAC that activated SoxR, an effective ROS-producer, and a less agile but effective RES. Diamide was an RES that effectively formed disulfides and a weak RAC that activated SoxR. Monobromobimane was a moderately effective RES and a slow producer of ROS. Interestingly, benzoquinone induced the SigR system by forming adducts on cysteine thiols in RsrA, revealing a new pathway to modulate RsrA activity. Overall, this study showed that multiple chemical activities of a reactive compound can be conveniently monitored in vivo by examining the temporal response of multiple sensitive regulators in the cell to reveal novel activities of the chemicals.

10.
Sci Rep ; 6: 28628, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346454

RESUMO

Antibiotic-producing streptomycetes are rich sources of resistance mechanisms against endogenous and exogenous antibiotics. An ECF sigma factor σ(R) (SigR) is known to govern the thiol-oxidative stress response in Streptomyces coelicolor. Amplification of this response is achieved by producing an unstable isoform of σ(R) called σ(R'). In this work, we present evidence that antibiotics induce the SigR regulon via a redox-independent pathway, leading to antibiotic resistance. The translation-inhibiting antibiotics enhanced the synthesis of stable σ(R), eliciting a prolonged response. WblC/WhiB7, a WhiB-like DNA-binding protein, is responsible for inducing sigRp1 transcripts encoding the stable σ(R). The amount of WblC protein and its binding to the sigRp1 promoter in vivo increased upon antibiotic treatment. A similar phenomenon appears to exist in Mycobacterium tuberculosis as well. These findings reveal a novel antibiotic-induced resistance mechanism conserved among actinomycetes, and also give an explicit example of overlap in cellular damage and defense mechanisms between thiol-oxidative and anti- translational stresses.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Fator VII/genética , Fator sigma/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Regulon/genética , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/genética , Compostos de Sulfidrila/farmacologia
11.
BMC Genomics ; 16: 116, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25766138

RESUMO

BACKGROUND: NdgR is an IclR-type transcription factor that regulates leucine biosynthesis and other metabolic pathways in Streptomyces coelicolor. Recent study revealed that NdgR is one of the regulatory targets of SigR, an oxidative stress response sigma factor, suggesting that the NdgR plays an important physiological role in response to environmental stresses. Although the regulatory functions of NdgR were partly characterized, determination of its regulon is required for better understanding of the transcriptional regulatory network related with the oxidative stress response. RESULTS: We determined genome-wide binding loci of NdgR by using chromatin immunoprecipitation coupled with sequencing (ChIP-seq) and explored its physiological roles. The ChIP-seq profiles revealed 19 direct binding loci with a 15-bp imperfect palindromic motif, including 34 genes in their transcription units. Most genes in branched-chain amino acid and cysteine biosynthesis pathways were involved in the NdgR regulon. We proved that ndgR is induced by SigR under the thiol oxidation, and that an ndgR mutant strain is sensitive to the thiol oxidizing agent, diamide. Through the expression test of NdgR and the target genes for NdgR under diamide treatment, regulatory motifs were suggested. Interestingly, NdgR constitutes two regulatory motifs, coherent and incoherent feed-forward loops (FFL), in order to control its regulon under the diamide treatment. Using the regulatory motifs, NdgR regulates cysteine biosynthesis in response to thiol oxidative stress, enabling cells to maintain sulfur assimilation with homeostasis under stress conditions. CONCLUSIONS: Our analysis revealed that NdgR is a global transcriptional regulator involved in the regulation of branched-chain amino acids biosynthesis and sulphur assimilation. The identification of the NdgR regulon broadens our knowledge regarding complex regulatory networks governing amino acid biosynthesis in the context of stress responses in S. coelicolor.


Assuntos
Aminoácidos de Cadeia Ramificada/biossíntese , Proteínas de Bactérias/genética , Estresse Oxidativo/efeitos dos fármacos , Fator sigma/metabolismo , Streptomyces coelicolor/genética , Fatores de Transcrição/metabolismo , Aminoácidos de Cadeia Ramificada/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Genoma Bacteriano , Alinhamento de Sequência , Fator sigma/genética , Streptomyces coelicolor/efeitos dos fármacos , Compostos de Sulfidrila/farmacologia , Fatores de Transcrição/biossíntese
12.
J Mass Spectrom ; 48(2): 164-71, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23378088

RESUMO

Ten ceramides and four cerebrosides were extracted from the starfish Distolasterias nipon by solvent extraction, silica gel column chromatography and reversed-phase high-performance liquid chromatography. Structural identification was conducted using tandem mass spectrometry of monosodiated ions desorbed by fast atom bombardment. The complete structures of four cerebrosides were determined by a previously reported method. The high-energy collision-induced dissociation (CID) spectral characteristics of ceramides with various structures depend on the number and positions of double bonds on both the N-acyl and sphingoid chains, the presence of a hydroxyl group or a double bond at the C-4 position of the sphingoid chain and the presence of an α-hydroxy group on the N-acyl chain. The high-energy CID of the monosodiated ion, [M+Na](+), of each ceramide molecular species generated abundant ions, providing information on the composition of the fatty acyl chains and sphingoid long-chain bases. Each homologous ion series along the fatty acyl group and aliphatic chain of the sphingoid base was used for locating the double-bond positions of both chains and hydroxyl groups on the sphingoid base chain. The double-bond positions were also confirmed by the m/z values of abundant allylic even- and odd-electron ions, and the intensity ratio of the T ion peak relative to the O ion peak. This technique could determine the complete structures of ceramides and cerebrosides in an extract mixture and has great potential for determining other sphingolipids isolated from various biological sources.


Assuntos
Ceramidas/química , Sódio/química , Estrelas-do-Mar/química , Espectrometria de Massas em Tandem/métodos , Animais , Ceramidas/isolamento & purificação
13.
Mol Microbiol ; 85(2): 326-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22651816

RESUMO

Numerous thiol-reactive compounds cause oxidative stress where cells counteract by activation of survival strategies regulated by thiol-based sensors. In Streptomyces coelicolor, a model actinomycete, a sigma/antisigma pair SigR/RsrA controls the response to thiol-oxidative stress. To unravel its full physiological functions, chromatin immuno-precipitation combined with sequence and transcript analyses were employed to identify 108 SigR target genes in S. coelicolor and to predict orthologous regulons across actinomycetes. In addition to reported genes for thiol homeostasis, protein degradation and ribosome modulation, 64 additional operons were identified suggesting new functions of this global regulator. We demonstrate that SigR maintains the level and activity of the housekeeping sigma factor HrdB during thiol-oxidative stress, a novel strategy for stress responses. We also found that SigR defends cells against UV and thiol-reactive damages, in which repair UvrA takes a part. Using a refined SigR-binding sequence model, SigR orthologues and their targets were predicted in 42 actinomycetes. This revealed a conserved core set of SigR targets to function for thiol homeostasis, protein quality control, possible modulation of transcription and translation, flavin-mediated redox reactions, and Fe-S delivery. The composition of the SigR regulon reveals a robust conserved physiological mechanism to deal with thiol-oxidative stress from bacteria to human.


Assuntos
Estresse Oxidativo , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/fisiologia , Estresse Fisiológico , Compostos de Sulfidrila/toxicidade , Sítios de Ligação , Imunoprecipitação da Cromatina , Análise por Conglomerados , Perfilação da Expressão Gênica , Viabilidade Microbiana/efeitos dos fármacos , Regulon , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição
14.
Nucleic Acids Res ; 39(17): 7586-97, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21685450

RESUMO

Various environmental oxidative stresses are sensed by redox-sensitive regulators through cysteine thiol oxidation or modification. A few zinc-containing anti-sigma (ZAS) factors in actinomycetes have been reported to respond sensitively to thiol oxidation, among which RsrA from Streptomyces coelicolor is best characterized. It forms disulfide bonds upon oxidation and releases bound SigR to activate thiol oxidative stress response genes. Even though numerous ZAS proteins exist in bacteria, features that confer redox sensitivity to a subset of these have been uncharacterized. In this study, we identified seven additional redox-sensitive ZAS factors from actinomycetes. Comparison with redox-insensitive ZAS revealed characteristic sequence patterns. Domain swapping demonstrated the significance of the region K(33)FEHH(37)FEEC(41)SPC(44)LEK(47) that encompass the conserved HX(3)CX(2)C (HCC) motif. Mutational effect of each residue on diamide responsive induction of SigR target genes in vivo demonstrated that several residues, especially those that flank two cysteines (E39, E40, L45, E46), contribute to redox sensitivity. These residues are well conserved among redox-sensitive ZAS factors, and hence are proposed as redox-determinants in sensitive ZAS. H37A, C41A, C44A and F38A mutations, in contrast, compromised SigR-binding activity significantly, apparently affecting structural integrity of RsrA. The residue pattern around HCC motif could therefore serve as an indicator to predict redox-sensitive ZAS factors from sequence information.


Assuntos
Proteínas de Bactérias/química , Metaloproteínas/química , Estresse Oxidativo/genética , Fatores de Transcrição/química , Zinco/química , Actinobacteria/genética , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Diamida/farmacologia , Regulação Bacteriana da Expressão Gênica , Metaloproteínas/classificação , Metaloproteínas/genética , Dados de Sequência Molecular , Mutagênese , Oxirredução , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Compostos de Sulfidrila/farmacologia , Reagentes de Sulfidrila/farmacologia , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...