Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomol Ther (Seoul) ; 29(1): 11-21, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32690821

RESUMO

Adipose tissue secretes many adipokines which contribute to various metabolic processes, such as blood pressure, glucose homeostasis, inflammation and angiogenesis. The biology of adipose tissue in an obese individual is abnormally altered in a manner that increases the body's vulnerability to immune diseases, such as psoriasis. Psoriasis is considered a chronic inflammatory skin disease which is closely associated with being overweight and obese. Additionally, secretion of leptin, a type of adipokine, increases dependently on adipose cell size and adipose accumulation. Likewise, high leptin levels also aggravate obesity via development of leptin resistance, suggesting that leptin and obesity are closely related. Leptin induction in psoriatic patients is mainly driven by the interleukin (IL)-23/helper T (Th) 17 axis pathway. Furthermore, leptin can have an effect on various types of immune cells such as T cells and dendritic cells. Here, we discuss the relationship between obesity and leptin expression as well as the linkage between effect of leptin on immune cells and psoriasis progression.

2.
Oxid Med Cell Longev ; 2020: 8871745, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381275

RESUMO

Although blue light has been reported to affect skin cells negatively, little is known about its action mechanisms in skin cells. Therefore, we investigated the role of the transient receptor potential vanilloid 1 (TRPV1) in blue light-induced effects on human keratinocytes and its underlying mechanisms. Blue light decreased cell proliferation and upregulated TRPV1 expression. Blue light also suppressed the epidermal growth factor receptor- (EGFR-) mediated signaling pathway by reducing the protein levels of EGFR and suppressing the EGFR/PI3K/AKT/GSK3ß/FoxO3a pathway. The blue light-induced effect in cell proliferation was reversed by TRPV1 siRNA, but not capsazepine, a TRPV1-specific antagonist. In addition, blue light irradiation increased the production of reactive oxygen species (ROS) and tumor necrosis factor-α (TNF-α). Blue light irradiation also increased both phosphorylation levels of TRPV1 and calcium influx. The blue light-induced increase in production of ROS and TNF-α was reversed by capsazepine. Furthermore, the blue light-induced increase in production of TNF-α was attenuated by SP600125 or PDTC. These findings show that blue light regulates cell survival and production of ROS and TNF-α; its effects are mediated via TRPV1. Specifically, the effects of blue light on cell proliferation are mediated by upregulating TRPV1, a negative regulator of EGFR-FoxO3a signaling. Blue light-induced production of ROS and TNF-α is also mediated through increased calcium influx via TRPV1 activation.


Assuntos
Queratinócitos/efeitos da radiação , Luz/efeitos adversos , Canais de Cátion TRPV/genética , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Células HEK293 , Células HaCaT , Humanos , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos da radiação , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Canais de Cátion TRPV/metabolismo
3.
Oxid Med Cell Longev ; 2019: 2386163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885779

RESUMO

Background. Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon present in the atmosphere, has cytotoxic and carcinogenic effects. There have been no reports to demonstrate involvement of Clematis apiifolia DC. extract (CAE) in B[a]P-induced effects. This study was conducted to investigate the effect of CAE on B[a]P-induced effects and to elucidate its mechanism of action in HaCaT human keratinocytes. CAE inhibited aryl hydrocarbon receptor (AhR) signaling by decreasing both XRE reporter activity and expression of cytochrome P450 1A1 (CYP1A1) induced by B[a]P treatment in HaCaT cells. We also found that B[a]P-induced nuclear translocation of AhR and production of reactive oxygen species (ROS) and proinflammatory cytokines were attenuated by CAE treatment. CAE treatment suppressed B[a]P-induced phosphorylation of Src (Tyr416). In addition, dasatinib, a Src inhibitor, also inhibited B[a]P-induced nuclear translocation of AhR, similar to CAE treatment. In addition, CAE activated antioxidant response element (ARE) signaling by increasing ARE luciferase reporter activity and expression of ARE-dependent genes such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1), and heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 by CAE was demonstrated by Western blot analysis and immunocytochemistry. The effects of CAE on ARE signaling were attenuated by knockdown of the Nrf2 gene. Inhibition of AhR signaling and activation of antioxidant activity by CAE operated in a reciprocally independent manner as evidenced by AhR and Nrf2 siRNA experiments. These findings indicate that CAE exerts protective effects against B[a]P by inhibiting AhR signaling and activating Nrf2-mediated signaling, suggesting its potential in protection from harmful B[a]P-containing pollutants.


Assuntos
Benzo(a)pireno/efeitos adversos , Benzo(a)pireno/toxicidade , Clematis/química , Queratinócitos/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Phytomedicine ; 58: 152877, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30849679

RESUMO

BACKGROUND: Melanin plays a crucial role in protecting human skin against exposure to ultraviolet (UV) radiation. However, its overproduction induces hyperpigmentation disorders of the skin. PURPOSE: To investigate effects of phenylethyl resorcinol as one resorcinol derivative on melanogenesis and its mechanisms using B16F10 mouse melanoma cells and human epidermal melanocytes. METHODS: Effects of phenylethyl resorcinol on melanogenesis and its mechanism of action were examined using several in vitro assays (i.e., cell survival, melanin content, cellular tyrosinase activity, real-time PCR analysis, luciferase-reporter assay, Western blot analysis, and ELISAs for cyclic AMP (cAMP), protein kinase A (PKA), cAMP response element binding (CREB) protein, and mitogen-activated protein kinases (MAPKs)). RESULTS: Phenylethyl resorcinol reduced both melanin content and tyrosinase activity in these cells. Phenylethyl resorcinol also suppressed tyrosinase activity in cell-free tyrosinase enzyme assay. Although phenylethyl resorcinol decreased mRNA levels of tyrosinase and tyrosinase-related protein (TRP)-2, it did not affect mRNA levels of melanogenic gene microphthalmia-associated transcriptional factor (MITF) or TRP-1. Phenylethyl resorcinol had no effects on cAMP signaling or NF-κB signaling based on results of cyclic AMP response element (CRE)-luciferase reporter assay, cAMP production, protein kinase A (PKA) activity, Western blot assays for phosphorylated CRE-binding protein (CREB), NF-κB-luciferase reporter assay, and Western blot assays for phosphorylated NF-κB. However, phenylethyl resorcinol induced activation of activator protein-1 (AP-1) signaling. Specifically, phenylethyl resorcinol increased AP-1 reporter activity and increased phosphorylation of p44/42 MAPK, but not p38 MAPK or c-Jun N-terminal kinase (JNK). MEK1/2 and Src, upstream molecules of p44/42 MAPK were also phosphorylated by phenylethyl resorcinol. In addition, phenylethyl resorcinol-induced decreases in melanin content, tyrosinase activity, and MITF protein levels were attenuated by PD98059, a p44/42 MAPK inhibitor. CONCLUSION: These data indicate that the anti-melanogenic activity of phenylethyl resorcinol is mediated by activation of p44/42 MAPK, indicating that phenylethyl resorcinol may be a potential therapeutic agent for treating hyperpigmentation skin disorders.


Assuntos
Compostos Benzidrílicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Resorcinóis/farmacologia , Animais , Células Cultivadas , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hiperpigmentação/tratamento farmacológico , Melaninas/genética , Melanócitos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fosforilação/efeitos dos fármacos
5.
Oxid Med Cell Longev ; 2019: 9827519, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31949887

RESUMO

Melanogenesis is the biological process which the skin pigment melanin is synthesized to protect the skin against ultraviolet irradiation and other external stresses. Abnormal biology of melanocytes is closely associated with depigmented skin disorders such as vitiligo. In this study, we examined the effects of maclurin on melanogenesis and cytoprotection. Maclurin enhanced cellular tyrosinase activity as well as cellular melanin levels. We found that maclurin treatment increased the expression of microphthalmia-associated transcription factor (MITF), tyrosinase-related protein- (TRP-) 1, TRP-2, and tyrosinase. Mechanistically, maclurin promoted melanogenesis through cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein-dependent upregulation of MITF. CREB activation was found to be mediated by p38 mitogen-activated protein kinase (MAPK) or cAMP-protein kinase A (PKA) signaling. In addition, maclurin-induced CREB phosphorylation was mediated through the activation of both the cAMP/PKA and the p38 MAPK signaling pathways. Maclurin-induced suppression of p44/42 MAPK activation also contributed to its melanogenic activity. Furthermore, maclurin showed protective effects against H2O2 treatment and UVB irradiation in human melanocytes. These findings indicate that the melanogenic effects of maclurin depend on increased MITF gene expression, which is mediated by the activation of both p38 MAPK/CREB and cAMP/PKA/CREB signaling. Our results thus suggest that maclurin could be useful as a protective agent against hypopigmented skin disorders.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Epiderme/metabolismo , Melaninas/biossíntese , Melanócitos/metabolismo , Lectinas de Plantas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Epiderme/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Melanócitos/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Fosforilação , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética
6.
Sci Rep ; 8(1): 14958, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297846

RESUMO

Melanogenesis is the process of production of melanin pigments that are responsible for the colors of skin, eye, and hair and provide protection from ultraviolet radiation. However, excessive levels of melanin formation cause hyperpigmentation disorders such as freckles, melasma, and age spots. Liver X receptors (LXR) are nuclear oxysterol receptors belonging to the family of ligand-activated transcription factors and physiological regulators of lipid and cholesterol metabolism. In the skin, activation of LXRs stimulates differentiation of keratinocytes and augments lipid synthesis in sebocytes. However, the function of LXRs in melanogenesis has not been clearly elucidated. In addition, although beauvericin, a well-known mycotoxin primarily isolated from several fungi, has various biological properties, its involvement in melanogenesis has not been reported. Therefore, in this study, we examined the effects of beauvericin on melanogenesis and its molecular mechanisms. Beauvericin decreased melanin content and tyrosinase activity without any cytotoxicity. Beauvericin also reduced protein levels of MITF, tyrosinase, TRP1, and TRP2. In addition, beauvericin suppressed cAMP-PKA-CREB signaling and upregulated expression of LXR-α, resulting in the suppression of p38 MAPK. Our results indicate that beauvericin attenuates melanogenesis by regulating both cAMP/PKA/CREB and LXR-α/p38 MAPK pathways, consequently leading to a reduction of melanin levels.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Depsipeptídeos/farmacologia , Melaninas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Beauveria/química , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Depsipeptídeos/química , Humanos , Receptores X do Fígado/metabolismo , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Camundongos
7.
Int J Mol Sci ; 19(9)2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30205521

RESUMO

Urban particulate matter (UPM) exerts negative effects on various human organs. Transient receptor potential vanilloid 1 (TRPV1) is a polymodal sensory transducer that can be activated by multiple noxious stimuli. This study aimed to explore the effects of the UPM 1648a on the expression of TRPV1, and its regulatory mechanisms in HaCaT cells. UPM enhanced TRPV 1 promoter-luciferase reporter activity. UPM also increased expression of the TRPV 1 gene as evidenced by increased mRNA and protein levels of TRPV 1. In addition, elucidation of the underlying mechanism behind the UPM-mediated effects on TRPV 1 expression revealed that UPM can upregulate expression of the TRPV1 gene by activating activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). The UPM treatment also altered Ca2+ influx and cell proliferation, as well as production of interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß). In addition, these UPM-induced effects were attenuated by SB203580 and ammonium pyrrolidinedithiocarbamate (PDTC). However, SP600125 and PD98059 did not alter the UPM-induced effects. Taken together, these findings indicate that UPM upregulates expression of the TRPV 1 gene, which is mediated by the p38 mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways and suggest that UPM is a potential irritant that can induce skin processes such as aging and inflammatory responses.


Assuntos
Queratinócitos/metabolismo , NF-kappa B/metabolismo , Material Particulado/efeitos adversos , Transdução de Sinais , Canais de Cátion TRPV/genética , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular , Humanos , Queratinócitos/citologia
8.
Biosci Biotechnol Biochem ; 82(7): 1188-1196, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29621941

RESUMO

In this study, we investigated the inhibitory mechanisms of resorcinol in B16F10 mouse melanoma cells. We found that resorcinol reduced both the melanin content and tyrosinase activity in these cells. In addition, resorcinol suppressed the expression of melanogenic gene microphthalmia-associated transcriptional factor (MITF) and its downstream target genes tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. In addition, we found that resorcinol reduced intracellular cAMP levels and protein kinase A (PKA) activity, and increased phosphorylation of the p38 mitogen-activated protein kinase (MAPK). Resorcinol was also found to directly inhibit tyrosinase activity. However, resorcinol-induced decrease in melanin content, tyrosinase activity, and tyrosinase protein levels were attenuated by SB203580, a p38 MAPK inhibitor. Taken together, these data indicate that anti-melanogenic activity of resorcinol is be mediated through the inhibition of cAMP signaling and activation of p38 MAPK, indicating that resorcinol may be a possible ameliorating agent in the treatment of hyperpigmentation skin disorders.


Assuntos
AMP Cíclico/metabolismo , Indóis/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Resorcinóis/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Interações Medicamentosas , Ativação Enzimática , Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Indóis/metabolismo , Oxirredutases Intramoleculares/genética , Melaninas/metabolismo , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanose/tratamento farmacológico , Melanose/genética , Glicoproteínas de Membrana/genética , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/genética , Fosforilação , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Resorcinóis/uso terapêutico
9.
Chem Biol Interact ; 282: 63-68, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29317250

RESUMO

The stemness of stem cells is negatively affected by ultraviolet A (UVA) irradiation. This study was performed to examine the effects of arctigenin on UVA-irradiation-induced damage to the stemness of human mesenchymal stem cells (hMSCs) derived from adipose tissue. The mechanisms of action of arctigenin were also investigated. A BrdU-incorporation assay demonstrated that arctigenin attenuated the UVA-induced reduction of the cellular proliferative potential. Arctigenin also increased the UVA-induced reduction in stemness of hMSCs by upregulating stemness-related genes such as SOX2, OCT4, and NANOG. In addition, the UVA-induced reduction in the mRNA expression level of hypoxia-inducible factor (HIF)-1α was significantly recovered by arctigenin. The antagonizing effect of arctigenin on UVA irradiation was mediated by reduced PGE2 production through the inhibition of MAPKs (p42/44 MAPK, p38 MAPK, and JNK) and NF-κB. Overall, these findings suggest that arctigenin can ameliorate the reduced stemness of hMSCs induced by UVA irradiation. The effects of arctigenin are mediated by PGE2-cAMP signaling-dependent upregulation of HIF-1α. Therefore, arctigenin could be used as an antagonist to attenuate the effects of UVA irradiation.


Assuntos
Furanos/farmacologia , Lignanas/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
FEBS Lett ; 556(1-3): 104-10, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14706835

RESUMO

7,8-Dihydro-8-oxoguanine (8-oxoguanine; 8-oxo-G), one of the major oxidative DNA adducts, is highly susceptible to further oxidation by radicals. We confirmed the higher reactivity of 8-oxo-G toward reactive oxygen (singlet oxygen and hydroxyl radical) or nitrogen (peroxynitrite) species as compared to unmodified base. In this study, we raised the question about the effect of this high reactivity toward radicals on intramolecular and intermolecular DNA damage. We found that the amount of intact nucleoside in oligodeoxynucleotide containing 8-oxo-G decreased more by various radicals at higher levels of 8-oxo-G incorporation, and that the oligodeoxynucleotide damage and plasmid cleavage by hydroxyl radical were inhibited in the presence of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG). We conclude that 8-oxo-G within DNA induces intramolecular DNA base damage, but that free 8-oxo-G protects intermolecular DNA from oxidative stress. These results suggest that 8-oxo-G within DNA must be rapidly released to protect DNA from overall oxidative damage.


Assuntos
Dano ao DNA , DNA/efeitos dos fármacos , Guanina/análogos & derivados , Guanina/metabolismo , Guanina/farmacologia , Composição de Bases , DNA/metabolismo , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/química , Radicais Livres/metabolismo , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Oxidantes/química , Oxidantes/metabolismo , Estresse Oxidativo , Plasmídeos/química , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA