Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(7): 4656-4668, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36760306

RESUMO

Silicon microparticles (SiMPs) show considerable promise as an anode material in high-performance lithium-ion batteries (LIBs) because of their low-cost starting material and high capacity. The failure issues associated with the intrinsically low conductivity and significant volume expansion of Si have largely been resolved by designing silicon/carbon composites using carbon nanotubes (CNTs). The CNTs are important in terms of stress dissipation and the conductive network in Si/CNT composites. Here, we synthesized a SiMP/2D CNT sheet wrapping composite (SiMP/CNT wrapping) via a facile freeze-drying method with the use of highly dispersed single-walled CNTs. In this work, the well-dispersed CNTs are easily mixed with Si, resulting in effective CNT wrapping on the SiMP surface. During freeze-drying, the CNTs are self-assembled into a segregated 2D CNT sheet morphology via van der Waals interactions. The resulting CNT wrapping shows a unique wide range of conductive networks and mesh-like CNT sheets with void spaces. The SiMP/CNT wrapping 9 : 1 electrode exhibits good rate and cycle performance. The first charge/discharge capacity of SiMP/CNT wrapping 9 : 1 is 3160.7 mA h g-1/3469.1 mA h g-1 at 0.1 A g-1 with superior initial coulombic efficiency of 91.11%. After cycling, the SiMP/CNT wrapping electrode shows good structural integrity with preserved electrical conductivity. The superior electrochemical performance of the SiMP/CNT wrapping composite can be explained by an extensive conductive CNT network on the SiMPs and facile lithium-ion diffusion via mesh-like CNT wrapping.

2.
Nanotechnology ; 24(20): 205302, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23598441

RESUMO

We firstly introduce a facile method for the site-specific direct physical exfoliation of few-layer graphene sheets from cheap and easily enlargeable graphite grown on a Ni foil using an optimized polydimethylsiloxane (PDMS) stamp. By decreasing the PDMS cross-linking time, the PDMS elasticity is reduced to ∼52 kPa, similar to that of a typical gel. As a result of this process, the PDMS becomes more flexible yet remains in a handleable state as a stamp. Furthermore, the PDMS adhesion to a graphite/Ni surface, as measured by the peel strength, increases to ∼5.1 N m⁻¹, which is approximately 17 times greater than that of typical PDMS. These optimized properties allow the PDMS stamp to have improved contact with the graphite/Ni surface, including the graphite wrinkles. This process is verified, and changes in surface morphology are observed using a 3D laser scanning microscope. Under conformal contact, the optimized PDMS stamp demonstrates the site-specific direct physical exfoliation of few-layer graphene sheets including mono- and bi-layer graphene sheets from the graphite/Ni substrate without the use of special equipment, conditions or chemicals. The number of layers of the exfoliated graphene and its high quality are revealed by the measured Raman spectroscopy. The exfoliation method using tunable elasticity and adhesion of the PDMS stamp can be used not only for cost-effective mass production of defect-less few-layer graphene from the graphite substrate for micro/nano device arrays but also for nano-contact printing of various structures, devices and cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...