Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vet Med Sci ; 78(7): 1153-9, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27086859

RESUMO

ATP-sensitive potassium (KATP) channels are well characterized in cardiac, pancreatic and many other muscle cells. In the present study, functional expression of the KATP channel was examined in non-pregnant murine longitudinal myometrium. Isometric contraction measurements and Western blot were used. KATP channel openers (KCOs), such as pinacidil, cromakalim, diazoxide and nicorandil, inhibited spontaneous myometrial contractions in a reversible and glibenclamide-sensitive manner. KCOs inhibited oxytocin (OXT)- and prostaglandin F2α (PGF2α)-induced phasic contractions in a glibenclamide-sensitive manner. SUR2B and Kir6.2 were detected by Western blot, whereas SUR1, SUR2A and Kir6.1 were not. These results show that pinacidl, cromakalim, diazoxide and nicorandil-sensitive KATP channels exist in murine myometrium, which are composed of SUR2B and Kir6.2. Based on the modulatory effects of the KATP channel on spontaneous contraction, OXT- and PGF2α-induced contractions, KATP channels seem to play an essential role in murine myometrial motility via activation of SUR2B and Kir6.2.


Assuntos
Canais KATP/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/metabolismo , Contração Uterina , Trifosfato de Adenosina/metabolismo , Animais , Dinoprosta/antagonistas & inibidores , Feminino , Técnicas In Vitro , Contração Isométrica , Camundongos Endogâmicos ICR , Nicorandil/farmacologia , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Contração Uterina/efeitos dos fármacos
2.
Korean J Physiol Pharmacol ; 18(5): 425-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25352763

RESUMO

This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, K(+) channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, N(G)-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the H2 receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through H2 receptor and NO/sGC pathways.

3.
Korean J Physiol Pharmacol ; 16(5): 297-303, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23118553

RESUMO

This study was designed to elucidate high K(+)-induced relaxation in the human gastric fundus. Circular smooth muscle from the human gastric fundus greater curvature showed stretch-dependent high K(+) (50 mM)-induced contractions. However, longitudinal smooth muscle produced stretch-dependent high K(+)-induced relaxation. We investigated several relaxation mechanisms to understand the reason for the discrepancy. Protein kinase inhibitors such as KT 5823 (1 µM) and KT 5720 (1 µM) which block protein kinases (PKG and PKA) had no effect on high K(+)-induced relaxation. K(+) channel blockers except 4-aminopyridine (4-AP), a voltage-dependent K(+) channel (K(V)) blocker, did not affect high K(+)-induced relaxation. However, N(G)-nitro-L-arginine and 1H-(1,2,4)oxadiazolo (4,3-A)quinoxalin-1-one, an inhibitors of soluble guanylate cyclase (sGC) and 4-AP inhibited relaxation and reversed relaxation to contraction. High K(+)-induced relaxation of the human gastric fundus was observed only in the longitudinal muscles from the greater curvature. These data suggest that the longitudinal muscle of the human gastric fundus greater curvature produced high K(+)-induced relaxation that was activated by the nitric oxide/sGC pathway through a K(V) channel-dependent mechanism.

4.
Korean J Physiol Pharmacol ; 15(6): 405-13, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22359479

RESUMO

This study was designed to elucidate high-K(+)induced response of circular and longitudinal smooth muscle from human gastric corpus using isometric contraction. Contraction from circular and longitudinal muscle stripes of gastric corpus greater curvature and lesser curvature were compared. Circular smooth muscle from corpus greater curvature showed high K(+) (50 mM)-induced tonic contraction. On the contrary, however, longitudinal smooth muscle strips showed high K(+) (50 mM)-induced sustained relaxation. To find out the reason for the discrepancy we tested several relaxation mechanisms. Protein kinase blockers like KT5720, PKA inhibitor, and KT5823, PKG inhibitor, did not affect high K(+)-induced relaxation. K(+) channel blockers like tetraethylammonium (TEA), apamin (APA), glibenclamide (Glib) and barium (Ba(2+)) also had no effect. However, N(G)-nitro-L-arginine (L-NNA) and 1H-(1,2,4) oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC) and 4-AP (4-aminopyridine), voltage-dependent K(+) channel (K(V)) blocker, inhibited high K(+)-induced relaxation, hence reversing to tonic contraction. High K(+)-induced relaxation was observed in gastric corpus of human stomach, but only in the longitudinal muscles from greater curvature not lesser curvature. L-NNA, ODQ and K(V) channel blocker sensitive high K(+)-induced relaxation in longitudinal muscle of higher portion of corpus was also observed. These results suggest that longitudinal smooth muscle from greater curvature of gastric corpus produced high K(+)-induced relaxation which was activated by NO/sGC pathway and by K(V) channel dependent mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...