Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(22): e2404007121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768347

RESUMO

Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.


Assuntos
Tato , Realidade Virtual , Tecnologia sem Fio , Humanos , Tecnologia sem Fio/instrumentação , Tato/fisiologia , Pele , Robótica/instrumentação , Robótica/métodos
2.
Biosens Bioelectron ; 253: 116166, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428069

RESUMO

Eccrine sweat can serve as a source of biomarkers for assessing physiological health and nutritional balance, for tracking loss of essential species from the body and for evaluating exposure to hazardous substances. The growing interest in this relatively underexplored class of biofluid arises in part from its non-invasive ability for capture and analysis. The simplest devices, and the only ones that are commercially available, exploit soft microfluidic constructs and colorimetric assays with purely passive modes of operation. The most sophisticated platforms exploit batteries, electronic components and radio hardware for inducing sweat, for electrochemical evaluation of its content and for wireless transmission of this information. The work reported here introduces a technology that combines the advantages of these two different approaches, in the form of a cost-effective, easy-to-use device that supports on-demand evaluation of multiple biomarkers in sweat. This flexible, skin-interfaced, miniaturized system incorporates a hydrogel that contains an approved drug to activate eccrine sweat glands, electrodes and a simple circuit and battery to delivery this drug by iontophoresis through the surface of the skin, microfluidic channels and microreservoirs to capture the induced sweat, and multiple colorimetric assays to evaluate the concentrations of chloride, zinc, and iron. As demonstrated in healthy human participants monitored before and after a meal, such devices yield results that match those of traditional laboratory analysis techniques. Clinical studies that involve cystic fibrosis pediatric patients illustrate the use of this technology as a simple, painless, and reliable alternative to traditional hospital systems for measurements of sweat chloride.


Assuntos
Técnicas Biossensoriais , Suor , Humanos , Criança , Cloretos , Colorimetria , Biomarcadores
3.
Nat Med ; 29(12): 3137-3148, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973946

RESUMO

The human body generates various forms of subtle, broadband acousto-mechanical signals that contain information on cardiorespiratory and gastrointestinal health with potential application for continuous physiological monitoring. Existing device options, ranging from digital stethoscopes to inertial measurement units, offer useful capabilities but have disadvantages such as restricted measurement locations that prevent continuous, longitudinal tracking and that constrain their use to controlled environments. Here we present a wireless, broadband acousto-mechanical sensing network that circumvents these limitations and provides information on processes including slow movements within the body, digestive activity, respiratory sounds and cardiac cycles, all with clinical grade accuracy and independent of artifacts from ambient sounds. This system can also perform spatiotemporal mapping of the dynamics of gastrointestinal processes and airflow into and out of the lungs. To demonstrate the capabilities of this system we used it to monitor constrained respiratory airflow and intestinal motility in neonates in the neonatal intensive care unit (n = 15), and to assess regional lung function in patients undergoing thoracic surgery (n = 55). This broadband acousto-mechanical sensing system holds the potential to help mitigate cardiorespiratory instability and manage disease progression in patients through continuous monitoring of physiological signals, in both the clinical and nonclinical setting.


Assuntos
Unidades de Terapia Intensiva Neonatal , Recém-Nascido , Humanos , Monitorização Fisiológica
4.
Biosens Bioelectron ; 237: 115545, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517336

RESUMO

Temperature is the most commonly collected vital sign in all of clinical medicine; it plays a critical role in care decisions related to topics ranging from infection to inflammation, sleep, and fertility. Most assessments of body temperature occur at isolated anatomical locations (e.g. axilla, rectum, temporal artery, or oral cavity). Even this relatively primitive mode for monitoring can be challenging with vulnerable patient populations due to physical encumbrances and artifacts associated with the sizes, weights, shapes and mechanical properties of the sensors and, for continuous monitoring, their hard-wired interfaces to data collection units. Here, we introduce a simple, miniaturized, lightweight sensor as a wireless alternative, designed to address demanding applications such as those related to the care of neonates in high ambient humidity environments with radiant heating found in incubators in intensive care units. Such devices can be deployed onto specific anatomical locations of premature infants for homeostatic assessments. The estimated core body temperature aligns, to within 0.05 °C, with clinical grade, wired sensors, consistent with regulatory medical device requirements. Time-synchronized, multi-device operation across multiple body locations supports continuous, full-body measurements of spatio-temporal variations in temperature and additional modes of determining tissue health status in the context of sepsis detection and various environmental exposures. In addition to thermal sensing, these same devices support measurements of a range of other essential vital signs derived from thermo-mechanical coupling to the skin, for applications ranging from neonatal and infant care to sleep medicine and even pulmonary medicine.

5.
Nat Biomed Eng ; 7(10): 1215-1228, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37037964

RESUMO

Devices for monitoring blood haemodynamics can guide the perioperative management of patients with cardiovascular disease. Current technologies for this purpose are constrained by wired connections to external electronics, and wireless alternatives are restricted to monitoring of either blood pressure or blood flow. Here we report the design aspects and performance parameters of an integrated wireless sensor capable of implantation in the heart or in a blood vessel for simultaneous measurements of pressure, flow rate and temperature in real time. The sensor is controlled via long-range communication through a subcutaneously implanted and wirelessly powered Bluetooth Low Energy system-on-a-chip. The device can be delivered via a minimally invasive transcatheter procedure or it can be mounted on a passive medical device such as a stent, as we show for the case of the pulmonary artery in a pig model and the aorta and left ventricle in a sheep model, where the device performs comparably to clinical tools for monitoring of blood flow and pressure. Battery-less and wireless devices such as these that integrate capabilities for flow, pressure and temperature sensing offer the potential for continuous monitoring of blood haemodynamics in patients.

6.
Nat Commun ; 14(1): 1024, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823288

RESUMO

Soft, wireless physiological sensors that gently adhere to the skin are capable of continuous clinical-grade health monitoring in hospital and/or home settings, of particular value to critically ill infants and other vulnerable patients, but they present risks for injury upon thermal failure. This paper introduces an active materials approach that automatically minimizes such risks, to complement traditional schemes that rely on integrated sensors and electronic control circuits. The strategy exploits thin, flexible bladders that contain small volumes of liquid with boiling points a few degrees above body temperature. When the heat exceeds the safe range, vaporization rapidly forms highly effective, thermally insulating structures and delaminates the device from the skin, thereby eliminating any danger to the skin. Experimental and computational thermomechanical studies and demonstrations in a skin-interfaced mechano-acoustic sensor illustrate the effectiveness of this simple thermal safety system and suggest its applicability to nearly any class of skin-integrated device technology.


Assuntos
Eletrônica , Pele , Humanos , Pele/química , Temperatura Corporal , Temperatura Alta , Software
7.
Proc Natl Acad Sci U S A ; 120(6): e2217828120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716364

RESUMO

Thermal sensations contribute to our ability to perceive and explore the physical world. Reproducing these sensations in a spatiotemporally programmable manner through wireless computer control could enhance virtual experiences beyond those supported by video, audio and, increasingly, haptic inputs. Flexible, lightweight and thin devices that deliver patterns of thermal stimulation across large areas of the skin at any location of the body are of great interest in this context. Applications range from those in gaming and remote socioemotional communications, to medical therapies and physical rehabilitation. Here, we present a set of ideas that form the foundations of a skin-integrated technology for power-efficient generation of thermal sensations across the skin, with real-time, closed-loop control. The systems exploit passive cooling mechanisms, actively switchable thermal barrier interfaces, thin resistive heaters and flexible electronics configured in a pixelated layout with wireless interfaces to portable devices, the internet and cloud data infrastructure. Systematic experimental studies and simulation results explore the essential mechanisms and guide the selection of optimized choices in design. Demonstration examples with human subjects feature active thermoregulation, virtual social interactions, and sensory expansion.


Assuntos
Pele , Realidade Virtual , Humanos , Eletrônica , Sensação Térmica , Comunicação
8.
NPJ Digit Med ; 5(1): 147, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36123384

RESUMO

Swallowing is a complex neuromuscular activity regulated by the autonomic nervous system. Millions of adults suffer from dysphagia (impaired or difficulty swallowing), including patients with neurological disorders, head and neck cancer, gastrointestinal diseases, and respiratory disorders. Therapeutic treatments for dysphagia include interventions by speech-language pathologists designed to improve the physiology of the swallowing mechanism by training patients to initiate swallows with sufficient frequency and during the expiratory phase of the breathing cycle. These therapeutic treatments require bulky, expensive equipment to synchronously record swallows and respirations, confined to use in clinical settings. This paper introduces a wireless, wearable technology that enables continuous, mechanoacoustic tracking of respiratory activities and swallows through movements and vibratory processes monitored at the skin surface. Validation studies in healthy adults (n = 67) and patients with dysphagia (n = 4) establish measurement equivalency to existing clinical standard equipment. Additional studies using a differential mode of operation reveal similar performance even during routine daily activities and vigorous exercise. A graphical user interface with real-time data analytics and a separate, optional wireless module support both visual and haptic forms of feedback to facilitate the treatment of patients with dysphagia.

9.
ACS Appl Mater Interfaces ; 13(40): 47784-47792, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34585581

RESUMO

Indium gallium zinc oxide (IGZO) is one of the most promising materials for diverse optoelectronic applications based on thin-film transistors (TFTs) including ultraviolet (UV) photodetectors. In particular, the monitoring of UV-A (320-400 nm) exposure is very useful for healthcare applications because it can be used to prevent various human skin and eye-related diseases. However, the relatively weak optical absorption in the UV-A range and the persistent photoconductivity (PPC) arising from the oxygen vacancy-related states of IGZO thin films limit efficient UV monitoring. In this paper, we report the enhancement of the UV photoresponse characteristics of IGZO photo-TFTs by the surface functionalization of biomolecules on an IGZO channel. The biomaterial/IGZO interface plays a crucial role in enhancing UV-A absorption and suppressing PPC under negative gate bias, resulting in not only increased photoresponsivity and specific detectivity but also a fast and repeatable UV photoresponse. In addition, turning off the device without external bias completely eliminates PPC due to the internal electric field induced by the surface functionalization of biomaterials. Such a volatile feature of PPC enables the fast and repeatable UV photoresponse. These results suggest the potential of IGZO photo-TFTs combined with biomaterials for real-time UV monitoring.


Assuntos
Óxidos/química , Transistores Eletrônicos , Raios Ultravioleta , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Gálio/química , Gálio/efeitos da radiação , Índio/química , Índio/efeitos da radiação , Proteínas Luminescentes/química , Proteínas Luminescentes/efeitos da radiação , Óxidos/efeitos da radiação , Compostos de Zinco/química , Compostos de Zinco/efeitos da radiação
10.
Adv Mater ; 33(44): e2103974, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510572

RESUMO

Continuous monitoring of vital signs is an essential aspect of operations in neonatal and pediatric intensive care units (NICUs and PICUs), of particular importance to extremely premature and/or critically ill patients. Current approaches require multiple sensors taped to the skin and connected via hard-wired interfaces to external data acquisition electronics. The adhesives can cause iatrogenic injuries to fragile, underdeveloped skin, and the wires can complicate even the most routine tasks in patient care. Here, materials strategies and design concepts are introduced that significantly improve these platforms through the use of optimized materials, open (i.e., "holey") layouts and precurved designs. These schemes 1) reduce the stresses at the skin interface, 2) facilitate release of interfacial moisture from transepidermal water loss, 3) allow visual inspection of the skin for rashes or other forms of irritation, 4) enable triggered reduction of adhesion to reduce the probability for injuries that can result from device removal. A combination of systematic benchtop testing and computational modeling identifies the essential mechanisms and key considerations. Demonstrations on adult volunteers and on a neonate in an operating NICUs illustrate a broad range of capabilities in continuous, clinical-grade monitoring of conventional vital signs, and unconventional indicators of health status.


Assuntos
Monitorização Fisiológica
11.
Adv Mater ; 33(39): e2103857, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34369002

RESUMO

Wireless, skin-integrated devices for continuous, clinical-quality monitoring of vital signs have the potential to greatly improve the care of patients in neonatal and pediatric intensive-care units. These same technologies can also be used in the home, across a broad spectrum of ages, from beginning to end of life. Although miniaturized forms of such devices minimize patient burden and improve compliance, they represent life-threatening choking hazards for infants. A materials strategy is presented here to address this concern. Specifically, composite materials are introduced as soft encapsulating layers and gentle adhesives that release chemical compounds designed to elicit an intense bitter taste when placed in the mouth. Reflexive reactions to this sensation strongly reduce the potential for ingestion, as a safety feature. The materials systems described involve a non-toxic bitterant (denatonium benzoate) as a dopant in an elastomeric (poly(dimethylsiloxane)) or hydrogel matrix. Experimental and computational studies of these composite materials and the kinetics of release of the bitterant define the key properties. Incorporation into various wireless skin-integrated sensors demonstrates their utility in functional systems. This simple strategy offers valuable protective capabilities, with broad practical relevance to the welfare of children monitored with wearable devices.


Assuntos
Monitorização Fisiológica/métodos , Dispositivos Eletrônicos Vestíveis , Agentes Aversivos/química , Agentes Aversivos/metabolismo , Dimetilpolisiloxanos/química , Humanos , Hidrogéis/química , Lactente , Cinética , Monitorização Fisiológica/instrumentação , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo
12.
ACS Nano ; 14(1): 118-128, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31476128

RESUMO

The recent technology of transfer printing using various membrane-type flexible/stretchable electronic devices can provide electronic functions to desirable objects where direct device fabrication is difficult. However, if the target surfaces are rough and complex, the capability of accommodating surface mismatches for reliable interfacial adhesion remains a challenge. Here, we demonstrate that newly designed nanotubular cilia (NTCs), vertically aligned underneath a polyimide substrate, significantly enhance interfacial adhesion. The tubular structure easily undergoes flattening and wrapping motions to provide a large conformal contact area, and the synergetic effect of the assembled cilia strengthens the overall adhesion. Furthermore, the hierarchical structure consisting of radially spread film-type cilia combined with vertically aligned NTCs in specific regions enables successful transfer printing onto very challenging surfaces such as stone, bark, and textiles. Finally, we successfully transferred a temperature sensor onto an eggshell and indium gallium zinc oxide-based transistors onto a stone with no electrical failure.

13.
Adv Mater ; 30(30): e1801256, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29882220

RESUMO

A method for transforming planar electronic devices into 3D structures under mechanically mild and stable conditions is demonstrated. This strategy involves diffusion control of acetone as a plasticizer into a spatially designed acrylonitrile butadiene styrene (ABS) framework to both laminate membrane-type electronic devices and transform them into a desired 3D shape. Optical, mechanical, and electrical analysis reveals that the plasticized region serves as a damper and even reflows to release the stress of fragile elements, for example, an Au interconnect electrode in this study, below the ultimate stress point. This method also gives considerable freedom in aligning electronic devices not only in the neutral mechanical plane of the ABS framework, which is the general approach in flexible electronics, but also to the top surface, without inducing electrical failure. Finally, to develop a prototype omnidirectional optical system with minimal aberrations, this method is used to produce a bezel-less tetrahedral image sensor.

14.
Nat Commun ; 7: 11477, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27248982

RESUMO

Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for 'stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...