Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 142049, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631499

RESUMO

In the face of increasing nitrogen demand for crop cultivation driven by population growth, this study presents a sustainable solution to address both the heightened demand and the energy-intensive process of nitrogen removal from wastewater. Our approach involves the removal of nitrogen from wastewater and its subsequent return to the soil as a fertilizer. Using biochar derived from Aesculus turbinata fruit shells (ATFS), a by-product of post-medical use, we investigated the effect of pyrolysis temperature on the NH4-N adsorption capacity of ATFS biochar (ATFS-BC). Notably, the ATFS-BC pyrolyzed at 300 °C (ATFS-BC300) exhibited the highest NH4-N adsorption capacity of 15.61 mg/g. The superior performance of ATFS-BC300 was attributed to its higher number of oxygen functional groups and more negatively charged surface, which contributed to the enhanced NH4-N adsorption. The removal of NH4-N by ATFS-BC300 involved both physical diffusion and chemisorption, with NH4-N forming a robust multilayer adsorption on the biochar. Alkaline conditions favored NH4-N adsorption by ATFS-BC300; however, the presence of trivalent and divalent ions hindered this process. Rice plants were cultivated to assess the potential of NH4-N adsorbed ATFS-BC300 (NH4-ATFS-BC300) as a nitrogen fertilizer. Remarkably, medium doses of NH4-ATFS-BC300 (594.5 kg/ha) exhibited key agronomic traits similar to those of the commercial nitrogen fertilizer in rice seedlings. Furthermore, high doses of NH4-ATFS-BC300 demonstrated superior agronomic traits compared to the commercial fertilizer. This study establishes the viability of utilizing ATFS-BC300 as a dual-purpose solution for wastewater treatment and nitrogen fertilizer supply, presenting a promising avenue for addressing environmental challenges.


Assuntos
Amônia , Carvão Vegetal , Estudos de Viabilidade , Fertilizantes , Nitrogênio , Águas Residuárias , Carvão Vegetal/química , Águas Residuárias/química , Amônia/química , Adsorção , Frutas/química , Poluentes Químicos da Água/análise , Oryza/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos
2.
Chemosphere ; 336: 139191, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37307930

RESUMO

Quercus wood was used for thermal energy production, and wood bottom ash (WDBA) was used as a medium for water purification and soil fertilizer in accordance with the recently proposed food-water-energy nexus concept. The wood contained a gross calorific value of 14.83 MJ kg-1, and the gas generated during thermal energy production has the advantage of not requiring a desulfurization unit due to its low sulfur content. Wood-fired boilers emit less CO2 and SOX than coal boilers. The WDBA had a Ca content of 66.0%, and Ca existed in the forms of CaCO3 and Ca(OH)2. WDBA absorbed P by reacting with Ca in the form of Ca5(PO4)3OH. Kinetic and isotherm models revealed that the results of the experimental work were in good agreement with the pseudo-second-order and Langmuir models, respectively. The maximum P adsorption capacity of WDBA was 76.8 mg g-1, and 6.67 g L-1 of WDBA dose could completely remove P in water. The toxic units of WDBA tested using Daphnia magna were 6.1, and P adsorbed WDBA (P-WDBA) showed no toxicity. P-WDBA was used as an alternative P fertilizer for rice growth. P-WDBA application resulted in significantly greater rice growth in terms of all agronomic values compared to N and K treatments without P. This study proposed the utilization of WDBA, obtained from thermal energy production, to remove P from wastewater and replenish P in the soil for rice growth.


Assuntos
Fósforo , Águas Residuárias , Fertilizantes , Adsorção , Solo , Cinza de Carvão , Água
3.
J Environ Manage ; 339: 117891, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058929

RESUMO

This study addresses ways to circulate the flow of phosphorus (P) from water to soil to improve water quality and provide a sustainable supply of P into soil. Here, bottom ash (BA_CCM), the byproduct of the combustion of cattle manure, which is performed for obtaining energy, was used to remove P in wastewater. Next, the P-captured BA_CCM was used as P fertilizer for rice growth. BA_CCM was primarily composed of Ca (49.4%), C (24.0%), and P (9.9%), and the crystalline phases of Ca were calcium carbonate (CaCO3) and hydroxyapatite (Ca5(PO4)3OH). The mechanism of P removal by BA_CCM involves the formation of hydroxyapatite by reacting Ca2+ with PO43-. A reaction time of 3 h was required to achieve P adsorption to BA_CCM, and the maximum P adsorption capacity of BA_CCM was 45.46 mg/g. The increase in solution pH reduced P adsorption. However, at pH > 5, the P adsorption amount was maintained regardless of the pH increase. The presence of 10 mM SO42- and CO32- reduced P adsorption by 28.4% and 21.5%, respectively, and the impact of the presence of Cl- and NO3- was less than 10%. The feasibility of BA_CCM was tested using real wastewater, and 3.33 g/L of BA_CCM dose achieved a P removal ratio of 99.8% and a residual concentration of <0.02 mg/L. The toxicity unit of BA_CCM determined for Daphnia magna (D. magna) was 5.1; however, the BA_CCM after P adsorption (P-BA_CCM) did not show any toxicity to D. magna. BA_CCM after P adsorption was used as an alternative to commercial P fertilizer. Rice fertilized with a medium level of P-BA_CCM showed better agronomic values for most agronomic traits, except root length, than that seen with the commercial P fertilizer. This study suggests that BA_CCM can be used as a value-added product to address environmental issues.


Assuntos
Oryza , Fósforo , Bovinos , Animais , Fósforo/química , Solo , Cinza de Carvão , Esterco , Fertilizantes , Águas Residuárias , Adsorção , Hidroxiapatitas
5.
Front Genet ; 13: 1036747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568369

RESUMO

Heading date (Hd) is one of the main factors determining rice production and regional adaptation. To identify the genetic factors involved in the wide regional adaptability of rice, we conducted a genome-wide association study (GWAS) with 190 North Korean rice accessions selected for non-precocious flowering in the Philippines, a low-latitude region. Using both linear mixed models (LMM) and fixed and random model circulating probability unification (FarmCPU), we identified five significant loci for Hd in trials in 2018 and 2019. Among the five lead single nucleotide polymorphisms (SNPs), three were located adjacent to the known Hd genes, Heading date 3a (Hd3a), Heading date 5 (Hd5), and GF14-c. In contrast, three SNPs were located in novel loci with minor effects on heading. Further GWAS analysis for photoperiod insensitivity (PS) revealed no significant genes associated with PS, supporting that this North Korean (NK) population is largely photoperiod-insensitive. Haplotyping analysis showed that more than 80% of the NK varieties harbored nonfunctional alleles of major Hd genes investigated, of which a nonfunctional allele of Heading date 1 (Hd1) was observed in 66% of the varieties. Geographical distribution analysis of Hd allele combination types showed that nonfunctional alleles of floral repressor Hd genes enabled rice cultivation in high-latitude regions. In contrast, Hd1 alleles largely contributed to the wide regional adaptation of rice varieties. In conclusion, an allelic combination of Hd genes is critical for rice cultivation across wide areas.

6.
Rice (N Y) ; 15(1): 22, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397732

RESUMO

Successful cultivation of rice (Oryza sativa L.) in many Asian countries requires submergence stress tolerance at the germination and early establishment stages. Two quantitative trait loci, Sub1 (conferring submergence tolerance) and AG1 (conferring anaerobic germination), were recently pyramided into a single genetic background, without compromising any desirable agronomic traits, leading to the development of Ciherang-Sub1 + AG1 (CSA). However, little research has been conducted to enhance plant tolerance to abiotic stress (submergence) and biotic stress (rice blast), which occur in a damp climate following flooding. The BC2F5 breeding line was phenotypically characterized using the AvrPi9 isolate. The biotic and abiotic stress tolerance of selected lines was tested under submergence stress and anaerobic germination conditions, and lines tolerant to each stress condition were identified through phenotypic and gene expression analyses. The Ciherang-Sub1 + AG1 + Pi9 (CSA-Pi9) line showed similar agronomic performance to its recurrent parent, CSA, but had significantly reduced chalkiness in field trials conducted in temperate regions. Unexpectedly, the CSA-Pi9 line also showed salinity tolerance. Thus, the breeding line newly developed in this study, CSA-Pi9, functioned under stress conditions, in which Sub1, AG1, and Pi9 play a role and had superior grain quality traits compared to its recurrent parent in temperate regions. We speculate that CSA-Pi9 will enable the establishment of climate-resilient rice cropping systems, particularly in East Asia.

7.
Chemosphere ; 287(Pt 3): 132267, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34537455

RESUMO

This study investigated the solution for two environmental issues: excess of P in water and its deficiency in soil, which is restored by transferring the adsorbed P from water into the soil using eggshell as an adsorbent. The eggshells were calcined at different temperatures to improve their adsorption capacity, and evaluated for their physical/chemical properties and P adsorption capacity. The eggshells calcined at 800 °C (CES-800) had the highest P adsorption; CaCO3 decomposed into 23.6% of CaO and 40.8% of Ca(OH)2, eluting more Ca that reacted with soluble P in water. X-ray diffraction analysis confirmed that CES-800 removed P as hydroxylapatite by reacting with Ca. Pseudo-first-order and Langmuir models suitably described the kinetic and equilibrium of P adsorption by CES-800, respectively. The maximum adsorption capacity of CES-800 was 108.2 mg g-1. As the solution pH increased from 3 to 11, the adsorption amount decreased from 99.8 mg g-1 to 62.3 mg g-1. The feasibility of CES-800 as a filter medium was assessed using real lake water under dynamic flow conditions; > 90% of P removal was achieved at 158 h, and the P adsorbed was 11.5 mg g-1. When CES-800 and P adsorbed CES-800 (P-CES-800) were applied to the soil at the studied rates, the earthworms were unaffected by toxicity, suggesting the use of both adsorbents in soil without adverse effects. The shoot fresh weight, tiller number, and total dry weight significantly increased in P-CES-800 applied rice plants compared to the control plants, indicating that P-CES-800 can be a good alternative to conventional P-fertilizer in rice cultivation.


Assuntos
Fósforo , Poluentes Químicos da Água , Adsorção , Animais , Casca de Ovo/química , Fertilizantes , Concentração de Íons de Hidrogênio , Cinética , Solo , Água , Poluentes Químicos da Água/análise
8.
Plant Physiol ; 188(4): 1900-1916, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-34718775

RESUMO

During crop cultivation, water-deficit conditions retard growth, thus reducing crop productivity. Therefore, uncovering the mechanisms behind drought tolerance is a critical task for crop improvement. Here, we show that the rice (Oryza sativa) WRKY transcription factor OsWRKY5 negatively regulates drought tolerance. We determined that OsWRKY5 was mainly expressed in developing leaves at the seedling and heading stages, and that its expression was reduced by drought stress and by treatment with NaCl, mannitol, and abscisic acid (ABA). Notably, the genome-edited loss-of-function alleles oswrky5-2 and oswrky5-3 conferred enhanced drought tolerance, measured as plant growth under water-deficit conditions. Conversely, the overexpression of OsWRKY5 in the activation-tagged line oswrky5-D resulted in higher susceptibility under the same conditions. The loss of OsWRKY5 activity increased sensitivity to ABA, thus promoting ABA-dependent stomatal closure. Transcriptome deep sequencing and reverse transcription quantitative polymerase chain reaction analyses demonstrated that the expression of abiotic stress-related genes including rice MYB2 (OsMYB2) was upregulated in oswrky5 knockout mutants and downregulated in oswrky5-D mutants. Moreover, dual-luciferase, yeast one-hybrid, and chromatin immunoprecipitation assays showed that OsWRKY5 directly binds to the W-box sequences in the promoter region of OsMYB2 and represses OsMYB2 expression, thus downregulating genes downstream of OsMYB2 in the ABA signaling pathways. Our results demonstrate that OsWRKY5 functions as a negative regulator of ABA-induced drought stress tolerance, strongly suggesting that inactivation of OsWRKY5 or manipulation of key OsWRKY5 targets could be useful to improve drought tolerance in rice cultivars.


Assuntos
Ácido Abscísico , Oryza , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Secas , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plants (Basel) ; 10(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34451568

RESUMO

Pyramiding useful QTLs into an elite variety is a promising strategy to develop tolerant varieties against multiple abiotic stresses. However, some QTLs may not be functionally compatible when they are introgressed into the same variety. Here, we tested the functional compatibility of Pup1 and Sub1, major QTLs for tolerance to phosphorus (P)-deficiency and submergence conditions, respectively. Phenotypic analysis revealed that IR64-Pup1+Sub1 (IPS) plants harboring both Pup1 and Sub1 QTLs show significant tolerance to submerged conditions, similarly to IR64-Sub1, while IPS failed to tolerate P deficiency and mild drought conditions; only IR64-Pup1 showed P deficiency tolerance. In submerged conditions, Sub1A and OsPSTOL1, major genes for Sub1 and Pup1 QTLs, respectively, were expressed at the same levels as in IPS and IR64-Sub1 and in IPS and IR64-Pup1, respectively. On the other hand, in P-non-supplied condition, crown root number, root length, and OsPSTOL1 expression level were significantly lower in IPS compared to those of IR64-Pup1. However, there was no significant difference in P content between IPS and IR64-Pup1. These results imply that Pup1 does not compromise Sub1 function in submerged condition, while Sub1 suppresses Pup1 function in P-non-supplied condition, possibly by regulating the transcript level of Pup1. In conclusion, Pup1 and Sub1 are regarded as functionally compatible under submergence condition but not under P-non-supplied condition. Further study is needed to elucidate the functional incompatibility of Pup1 and Sub1 QTLs in IPS under P-non-supplied condition.

10.
Plants (Basel) ; 10(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34371597

RESUMO

Kenaf (Hibiscus cannabinus L.) is widely used as an important industrial crop. It has the potential to act as a sustainable energy provider in the future, and contains beneficial compounds for medical and therapeutic use. However, there are no clear breeding strategies to increase its biomass or leaf volume. Thus, to attain an increase in these parameters, we examined potential key traits such as stem diameter, plant height, and number of nodes to determine the relationship among them. We hypothesized that it would be easier to reduce the amount of time and labor required for breeding if correlations among these parameters are identified. In this study, we found a strong positive correlation between height and number of nodes (Spearman's Rho = 0.67, p < 0.001) and number of nodes and stem diameter (Spearman's Rho = 0.65, p < 0.001), but a relatively low correlation (Spearman's Rho = 0.34, p < 0.01) between height and stem diameter in the later stages of kenaf growth. We suggest that an efficient breeding strategy could be devised according to the breeding purpose, considering the correlations between various individual traits of kenaf.

11.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525623

RESUMO

Genetic studies have revealed that chromatin modifications affect flowering time, but the underlying mechanisms by which chromatin remodeling factors alter flowering remain largely unknown in rice (Oryza sativa). Here, we show that Rolled Fine Striped (RFS), a chromodomain helicase DNA-binding 3 (CHD3)/Mi-2 subfamily ATP-dependent chromatin remodeling factor, promotes flowering in rice. Diurnal expression of RFS peaked at night under short-day (SD) conditions and at dawn under long-day (LD) conditions. The rfs-1 and rfs-2 mutants (derived from different genetic backgrounds) displayed a late-flowering phenotype under SD and LD conditions. Reverse transcription-quantitative PCR analysis revealed that among the flowering time-related genes, the expression of the major floral repressor Grain number and heading date 7 (Ghd7) was mainly upregulated in rfs mutants, resulting in downregulation of its downstream floral inducers, including Early heading date 1 (Ehd1), Heading date 3a (Hd3a), and Rice FLOWERING LOCUS T 1 (RFT1). The rfs mutation had pleiotropic negative effects on rice grain yield and yield components, such as plant height and fertility. Taking these observations together, we propose that RFS participates in multiple aspects of rice development, including the promotion of flowering independent of photoperiod.


Assuntos
DNA Helicases/genética , Histonas/metabolismo , Oryza/fisiologia , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Epigênese Genética , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Metilação , Mutação , Oryza/genética , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
J Environ Manage ; 270: 110817, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721295

RESUMO

We investigated the application of cheap but efficient sepiolite for the removal of phosphate and the use of phosphate-adsorbed sepiolite for rice cultivation. Sepiolite was calcined under different temperatures to improve its phosphate adsorption capacity; the sepiolite calcined at 950 °C (950-SPL) was found to have highest adsorption capacity. As the calcination temperature increased, the amount of Ca eluted from sepiolite also increased, resulting in the formation of Ca-P precipitates. Phosphate adsorption on 950-SPL reached equilibrium within 12 h. Both the Langmuir and Freudlich models were not well-fitted to the equilibrium adsorption model because phosphate at initial concentration was fully removed by 950-SPL. The maximum adsorption capacity of 950-SPL with respect to phosphate was 172.34 mg/g. The phosphate adsorption of 950-SPL was endothermic and spontaneous. Phosphate adsorption at pH 3 was two times higher than at pH 11. The presence of bicarbonate significantly influenced the decrease of phosphate by 950-SPL. A breakthrough of column packed with 950-SPL/sand was not observed during >200 h. The phosphate fraction in 950-SPL was mainly composed of apatite-P and residual fraction. A toxicity test using Daphnia magna showed that the toxic units of 950-SPL corresponded to no acute toxicity. Tiller number, shoot height, shoot dry weight and total dry weight were significantly higher in P-adsorbed 950-SPL application than control. It can be concluded that calcined sepiolite can be effective in the removal of phosphate and that the sepiolite after phosphate adsorption can be used as a P fertilizer in soil.


Assuntos
Fósforo , Poluentes Químicos da Água , Adsorção , Fertilizantes , Concentração de Íons de Hidrogênio , Cinética , Silicatos de Magnésio , Fosfatos , Solo , Água
13.
Int J Mol Sci ; 21(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936829

RESUMO

Expansins are key regulators of cell-wall extension and are also involved in the abiotic stress response. In this study, we evaluated the function of OsEXPA7 involved in salt stress tolerance. Phenotypic analysis showed that OsEXPA7 overexpression remarkably enhanced tolerance to salt stress. OsEXPA7 was highly expressed in the shoot apical meristem, root, and the leaf sheath. Promoter activity of OsEXPA7:GUS was mainly observed in vascular tissues of roots and leaves. Morphological analysis revealed structural alterations in the root and leaf vasculature of OsEXPA7 overexpressing (OX) lines. OsEXPA7 overexpression resulted in decreased sodium ion (Na+) and accumulated potassium ion (K+) in the leaves and roots. Under salt stress, higher antioxidant activity was also observed in the OsEXPA7-OX lines, as indicated by lower reactive oxygen species (ROS) accumulation and increased antioxidant activity, when compared with the wild-type (WT) plants. In addition, transcriptional analysis using RNA-seq and RT-PCR revealed that genes involved in cation exchange, auxin signaling, cell-wall modification, and transcription were differentially expressed between the OX and WT lines. Notably, salt overly sensitive 1, which is a sodium transporter, was highly upregulated in the OX lines. These results suggest that OsEXPA7 plays an important role in increasing salt stress tolerance by coordinating sodium transport, ROS scavenging, and cell-wall loosening.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Antioxidantes , Clorofila/análise , Genes de Plantas/genética , Germinação , Ácidos Indolacéticos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Sódio/metabolismo , Estresse Fisiológico/genética
14.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905964

RESUMO

Chlorophyll breakdown is a vital catabolic process of leaf senescence as it allows the recycling of nitrogen and other nutrients. In the present study, we isolated rice senescence-induced receptor-like kinase (OsSRLK), whose transcription was upregulated in senescing rice leaves. The detached leaves of ossrlk mutant (ossrlk) contained more green pigment than those of the wild type (WT) during dark-induced senescence (DIS). HPLC and immunoblot assay revealed that degradation of chlorophyll and photosystem II proteins was repressed in ossrlk during DIS. Furthermore, ultrastructural analysis revealed that ossrlk leaves maintained the chloroplast structure with intact grana stacks during dark incubation; however, the retained green color and preserved chloroplast structures of ossrlk did not enhance the photosynthetic competence during age-dependent senescence in autumn. In ossrlk, the panicles per plant was increased and the spikelets per panicle were reduced, resulting in similar grain productivity between WT and ossrlk. By transcriptome analysis using RNA sequencing, genes related to phytohormone, senescence, and chlorophyll biogenesis were significantly altered in ossrlk compared to those in WT during DIS. Collectively, our findings indicate that OsSRLK may degrade chlorophyll by participating in a phytohormone-mediated pathway.


Assuntos
Clorofila/metabolismo , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Escuridão , Grão Comestível , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação , Oryza/genética , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética
15.
Mitochondrial DNA B Resour ; 2(2): 819-820, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33473995

RESUMO

Rice (Oryza sativa) is the predominant staple food crop belonging to the Poaceae family. In this study, complete chloroplast genome sequence of O. sativa aus-type variety Nagina-22 was characterized through de novo assembly. The genome is a circular DNA molecule of 134,503 bp and has typical quadripartite structures including large single copy region (80,548 bp), small single copy region (12,347 bp), and a pair of inverted repeats (20,804 bp). A total of 120 genes were predicted in the genome, including 77 protein-coding genes, 8 open reading frame genes, 31 tRNA genes, and 4 rRNA genes. Phylogenetic analysis confirmed a close taxonomical relationship with O. sativa ssp. Indica species.

16.
J Exp Bot ; 66(22): 7045-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26276867

RESUMO

Lesion mimic mutants commonly display spontaneous cell death in pre-senescent green leaves under normal conditions, without pathogen attack. Despite molecular and phenotypic characterization of several lesion mimic mutants, the mechanisms of the spontaneous formation of cell death lesions remain largely unknown. Here, the rice lesion mimic mutant spotted leaf3 (spl3) was examined. When grown under a light/dark cycle, the spl3 mutant appeared similar to wild-type at early developmental stages, but lesions gradually appeared in the mature leaves close to heading stage. By contrast, in spl3 mutants grown under continuous light, severe cell death lesions formed in developing leaves, even at the seedling stage. Histochemical analysis showed that hydrogen peroxide accumulated in the mutant, likely causing the cell death phenotype. By map-based cloning and complementation, it was shown that a 1-bp deletion in the first exon of Oryza sativa Mitogen-Activated Protein Kinase Kinase Kinase1 (OsMAPKKK1)/OsEDR1/OsACDR1 causes the spl3 mutant phenotype. The spl3 mutant was found to be insensitive to abscisic acid (ABA), showing normal root growth in ABA-containing media and delayed leaf yellowing during dark-induced and natural senescence. Expression of ABA signalling-associated genes was also less responsive to ABA treatment in the mutant. Furthermore, the spl3 mutant had lower transcript levels and activities of catalases, which scavenge hydrogen peroxide, probably due to impairment of ABA-responsive signalling. Finally, a possible molecular mechanism of lesion formation in the mature leaves of spl3 mutant is discussed.


Assuntos
Ácido Abscísico/metabolismo , Genes de Plantas , MAP Quinase Quinase Quinase 1/genética , Oryza/genética , Proteínas de Plantas/genética , Catalase/biossíntese , Morte Celular , Senescência Celular , Clonagem Molecular , Regulação para Baixo , MAP Quinase Quinase Quinase 1/metabolismo , Mutação , Oryza/enzimologia , Oryza/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
17.
Sci Rep ; 5: 9728, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25962685

RESUMO

Arabidopsis flowers early under long days (LD) and late under short days (SD). The repressor of photomorphogenesis DE-ETIOLATED1 (DET1) delays flowering; det1-1 mutants flower early, especially under SD, but the molecular mechanism of DET1 regulation remains unknown. Here we examine the regulatory function of DET1 in repression of flowering. Under SD, the det1-1 mutation causes daytime expression of FKF1 and CO; however, their altered expression has only a small effect on early flowering in det1-1 mutants. Notably, DET1 interacts with GI and binding of GI to the FT promoter increases in det1-1 mutants, suggesting that DET1 mainly restricts GI function, directly promoting FT expression independent of CO expression. Moreover, DET1 interacts with MSI4/FVE, which epigenetically inhibits FLC expression, indicating that the lack of FLC expression in det1-1 mutants likely involves altered histone modifications at the FLC locus. These data demonstrate that DET1 acts in both photoperiod and autonomous pathways to inhibit expression of FT and SOC1. Consistent with this, the early flowering of det1-1 mutants disappears completely in the ft-1 soc1-2 double mutant background. Thus, we propose that DET1 is a strong repressor of flowering and has a pivotal role in maintaining photoperiod sensitivity in the regulation of flowering time.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Histonas/genética , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Repressoras/genética
18.
Plant Cell Environ ; 38(12): 2527-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25850808

RESUMO

In the facultative long-day (LD) plant Arabidopsis thaliana, FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) is activated by blue light and promotes flowering through the transcriptional and post-translational regulation of CONSTANS under inductive LD conditions. By contrast, the facultative short day (SD) plant rice (Oryza sativa) flowers early under inductive SD and late under non-inductive LD conditions; the regulatory function of OsFKF1 remains elusive. Here we show that osfkf1 mutants flower late under SD, LD and natural LD conditions. Transcriptional analysis revealed that OsFKF1 up-regulates the expression of the floral activator Ehd2 and down-regulates the expression of the floral repressor Ghd7; these regulators up- and down-regulate Ehd1 expression, respectively. Moreover, OsFKF1 can up-regulate Ehd1 expression under blue light treatment, without affecting the expression of Ehd2 and Ghd7. In contrast to the LD-specific floral activator Arabidopsis FKF1, OsFKF1 likely acts as an autonomous floral activator because it promotes flowering independent of photoperiod, probably via its distinct roles in controlling the expression of rice-specific genes including Ehd2, Ghd7 and Ehd1. Like Arabidopsis FKF1, which interacts with GI and CDF1, OsFKF1 also interacts with OsGI and OsCDF1 (also termed OsDOF12). Thus, we have identified similar and distinct roles of FKF1 in Arabidopsis and rice.


Assuntos
Proteínas de Arabidopsis/metabolismo , Flavinas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Ritmo Circadiano , Flores/genética , Flores/fisiologia , Flores/efeitos da radiação , Técnicas de Inativação de Genes , Luz , Mutagênese Insercional , Oryza/fisiologia , Oryza/efeitos da radiação , Fotoperíodo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Tempo
19.
Mol Cells ; 38(1): 81-8, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25431424

RESUMO

Flowering time (or heading date) is controlled by intrinsic genetic programs in response to environmental cues, such as photoperiod and temperature. Rice, a facultative short-day (SD) plant, flowers early in SD and late in long-day (LD) conditions. Casein kinases (CKs) generally act as positive regulators in many signaling pathways in plants. In rice, Heading date 6 (Hd6) and Hd16 encode CK2α and CKI, respectively, and mainly function to delay flowering time. Additionally, the major LD-dependent floral repressors Hd2/Oryza sativa Pseudo-Response Regulator 37 (OsPRR37; hereafter PRR37) and Ghd7 also confer strong photoperiod sensitivity. In floral induction, Hd16 acts upstream of Ghd7 and CKI interacts with and phosphorylates Ghd7. In addition, Hd6 and Hd16 also act upstream of Hd2. However, whether CKI and CK2α directly regulate the function of PRR37 remains unclear. Here, we use in vitro pull-down and in vivo bimolecular fluorescence complementation assays to show that CKI and CK2α interact with PRR37. We further use in vitro kinase assays to show that CKI and CK2α phosphorylate different regions of PRR37. Our results indicate that direct posttranslational modification of PRR37 mediates the genetic interactions between these two protein kinases and PRR37. The significance of CK-mediated phosphorylation for PRR37 and Ghd7 function is discussed.


Assuntos
Caseína Quinase II/metabolismo , Caseína Quinase I/metabolismo , Oryza/fisiologia , Ritmo Circadiano , Técnicas In Vitro , Oryza/enzimologia , Fosforilação , Fotoperíodo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional
20.
Mol Plant ; 7(8): 1288-1302, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24719469

RESUMO

Chlorophyll (Chl) degradation causes leaf yellowing during senescence or under stress conditions. For Chl breakdown, STAY-GREEN1 (SGR1) interacts with Chl catabolic enzymes (CCEs) and light-harvesting complex II (LHCII) at the thylakoid membrane, possibly to allow metabolic channeling of potentially phototoxic Chl breakdown intermediates. Among these Chl catabolic components, SGR1 acts as a key regulator of leaf yellowing. In addition to SGR1 (At4g22920), the Arabidopsis thaliana genome contains an additional homolog, SGR2 (At4g11910), whose biological function remains elusive. Under senescence-inducing conditions, SGR2 expression is highly up-regulated, similarly to SGR1 expression. Here we show that SGR2 function counteracts SGR1 activity in leaf Chl degradation; SGR2-overexpressing plants stayed green and the sgr2-1 knockout mutant exhibited early leaf yellowing under age-, dark-, and stress-induced senescence conditions. Like SGR1, SGR2 interacted with LHCII but, in contrast to SGR1, SGR2 interactions with CCEs were very limited. Furthermore, SGR1 and SGR2 formed homo- or heterodimers, strongly suggesting a role for SGR2 in negatively regulating Chl degradation by possibly interfering with the proposed CCE-recruiting function of SGR1. Our data indicate an antagonistic evolution of the functions of SGR1 and SGR2 in Arabidopsis to balance Chl catabolism in chloroplasts with the dismantling and remobilizing of other cellular components in senescing leaf cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Senescência Celular , Clorofila/metabolismo , Fosfolipases/metabolismo , Pigmentação , Folhas de Planta/citologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Técnicas de Inativação de Genes , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação , Fenótipo , Fosfolipases/deficiência , Fosfolipases/genética , Pigmentação/efeitos da radiação , Estresse Fisiológico/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...