Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326064

RESUMO

Increased mTOR activity has been shown to enhance regeneration of injured axons by increasing neuronal protein synthesis, while PTEN signaling can block mTOR activity to attenuate protein synthesis. MicroRNAs (miRs) have been implicated in regulation of PTEN and mTOR expression, and previous work in spinal cord showed an increase in miR-199a-3p after spinal cord injury (SCI) and increase in miR-21 in SCI animals that had undergone exercise. Pten mRNA is a target for miR-21 and miR-199a-3p is predicted to target mTor mRNA. Here, we show that miR-21 and miR-199a-3p are expressed in adult dorsal root ganglion (DRG) neurons, and we used culture preparations to test functions of the rat miRs in adult DRG and embryonic cortical neurons. miR-21 increases and miR-199a-3p decreases in DRG neurons after in vivo axotomy. In both the adult DRG and embryonic cortical neurons, miR-21 promotes and miR-199a-3p attenuates neurite growth. miR-21 directly bound to Pten mRNA and miR-21 overexpression decreased Pten mRNA levels. Conversely, miR-199a-3p directly bound to mTor mRNA and miR-199a-3p overexpression decreased mTor mRNA levels. Overexpressing miR-21 increased both overall and intra-axonal protein synthesis in cultured DRGs, while miR-199a-3p overexpression decreased this protein synthesis. The axon growth phenotypes seen with miR-21 and miR-199a-3p overexpression were reversed by co-transfecting PTEN and mTOR cDNA expression constructs with the predicted 3' untranslated region (UTR) miR target sequences deleted. Taken together, these studies indicate that injury-induced alterations in miR-21 and miR-199a-3p expression can alter axon growth capacity by changing overall and intra-axonal protein synthesis through regulation of the PTEN/mTOR pathway.


Assuntos
Axônios , MicroRNAs , PTEN Fosfo-Hidrolase , Serina-Treonina Quinases TOR , Animais , Axônios/metabolismo , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
2.
FEBS Open Bio ; 9(2): 374-383, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30761261

RESUMO

Distinct subcellular localization and subsequent translational control of 3' UTR variants of mRNA encoding brain-derived neurotrophic factor (BDNF) are critical for the development and plasticity of neurons. Although the processes that lead to preferential localization of BDNF have been well studied, it is still not clear how neurons ensure differential BDNF production in a spatial-specific manner. Here, we identified that microRNA (miRNA)-206 has the potential to specifically regulate BDNF with a long 3' UTR without affecting its short 3' UTR counterpart. Overexpression of miRNA-206 in sensory neurons resulted in a 30% and 45% reduction of BDNF protein expression in the cell bodies and axons, respectively. The work described in the present study indicates that miRNAs can differentially and specifically regulate the expression of transcript variants with different localization patterns.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , MicroRNAs/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Sci Rep ; 8(1): 16094, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382141

RESUMO

Oviductosomes (OVS) are nano-sized extracellular vesicles secreted in the oviductal luminal fluid by oviductal epithelial cells and known to be involved in sperm capacitation and fertility. Although they have been shown to transfer encapsulated proteins to sperm, cargo constituents other than proteins have not been identified. Using next-generation sequencing, we demonstrate that OVS are carriers of microRNAs (miRNAs), with 272 detected throughout the estrous cycle. Of the 50 most abundant, 6 (12%) and 2 (4%) were expressed at significantly higher levels (P < 0.05) at metestrus/diestrus and proestrus/estrus. RT-qPCR showed that selected miRNAs are present in oviductal epithelial cells in significantly (P < 0.05) lower abundance than in OVS, indicating selective miRNA packaging. The majority (64%) of the top 25 OVS miRNAs are present in sperm. These miRNAs' potential target list is enriched with transcription factors, transcription regulators, and protein kinases and there are several embryonic developmentally-related genes. Importantly, OVS can deliver to sperm miRNAs, including miR-34c-5p which is essential for the first cleavage and is solely sperm-derived in the zygote. Z-stack of confocal images of sperm co-incubated with OVS loaded with labeled miRNAs showed the intracellular location of the delivered miRNAs. Interestingly, individual miRNAs were predominantly localized in specific head compartments, with miR-34c-5p being highly concentrated at the centrosome where it is known to function. These results, for the first time, demonstrate OVS' ability to contribute to the sperm's miRNA repertoire (an important role for solely sperm-derived zygotic miRNAs) and the physiological relevance of an OVS-borne miRNA that is delivered to sperm.


Assuntos
Centrossomo/metabolismo , Ciclo Estral/genética , Vesículas Extracelulares/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Oviductos/metabolismo , Espermatozoides/metabolismo , Animais , Proliferação de Células , Centrossomo/ultraestrutura , Desenvolvimento Embrionário , Endocitose , Vesículas Extracelulares/ultraestrutura , Feminino , Regulação da Expressão Gênica , Ontologia Genética , Masculino , Camundongos , MicroRNAs/genética , Oviductos/embriologia , Oviductos/ultraestrutura , Reprodutibilidade dos Testes
4.
Mol Neurobiol ; 55(1): 483-494, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27966078

RESUMO

Small non-coding RNAs (sncRNAs) have been shown to play pivotal roles in spatiotemporal-specific gene regulation that is linked to many different biological functions. PIWI-interacting RNAs (piRNAs), typically 25-34-nucleotide long, are originally identified and thought to be restricted in germline cells. However, recent studies suggest that piRNAs associate with neuronal PIWI proteins, contributing to neuronal development and function. Here, we identify a cohort of piRNA-like sncRNAs (piLRNAs) in rat sciatic nerve axoplasm and directly contrast temporal changes of piLRNA levels in the nerve following injury, as compared with those in an uninjured nerve using deep sequencing. We find that 32 of a total of 53 annotated piLRNAs show significant changes in their levels in the regenerating nerve, suggesting that individual axonal piLRNAs may play important regulatory roles in local messenger RNA (mRNA) translation during regeneration. Bioinformatics and biochemical analyses show that these piLRNAs carry characteristic features of mammalian piRNAs, including sizes, a sequence bias for uracil at the 5'-end and a 2'-O-methylation at the 3'-end. Their axonal expression is directly visualized by fluorescence in situ hybridization in cultured dorsal root ganglion neurons as well as immunoprecipitation with MIWI. Further, depletion of MIWI protein using RNAi from cultured sensory neurons increases axon growth rates, decreases axon retraction after injury, and increases axon regrowth after injury. All these data suggest more general roles for MIWI/piLRNA pathway that could confer a unique advantage for coordinately altering the population of proteins generated in growth cones and axons of neurons by targeting mRNA cohorts.


Assuntos
Envelhecimento/metabolismo , Axônios/metabolismo , RNA Interferente Pequeno/metabolismo , Pequeno RNA não Traduzido/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Proteínas Argonautas/metabolismo , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Masculino , Pequeno RNA não Traduzido/genética , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Fatores de Tempo
5.
J Cell Sci ; 130(21): 3650-3662, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28871047

RESUMO

HuD protein (also known as ELAVL4) has been shown to stabilize mRNAs with AU-rich elements (ARE) in their 3' untranslated regions (UTRs), including Gap43, which has been linked to axon growth. HuD also binds to neuritin (Nrn1) mRNA, whose 3'UTR contains ARE sequences. Although the Nrn1 3'UTR has been shown to mediate its axonal localization in embryonic hippocampal neurons, it is not active in adult dorsal root ganglion (DRG) neurons. Here, we asked why the 3'UTR is not sufficient to mediate the axonal localization of Nrn1 mRNA in DRG neurons. HuD overexpression increases the ability of the Nrn1 3'UTR to mediate axonal localizing in DRG neurons. HuD binds directly to the Nrn1 ARE with about a two-fold higher affinity than to the Gap43 ARE. Although the Nrn1 ARE can displace the Gap43 ARE from HuD binding, HuD binds to the full 3'UTR of Gap43 with higher affinity, such that higher levels of Nrn1 are needed to displace the Gap43 3'UTR. The Nrn1 3'UTR can mediate a higher level of axonal localization when endogenous Gap43 is depleted from DRG neurons. Taken together, our data indicate that endogenous Nrn1 and Gap43 mRNAs compete for binding to HuD for their axonal localization and activity of the Nrn1 3'UTR.


Assuntos
Regiões 3' não Traduzidas , Axônios/metabolismo , Proteína Semelhante a ELAV 4/metabolismo , Proteína GAP-43/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Axônios/ultraestrutura , Sequência de Bases , Ligação Competitiva , Proteína Semelhante a ELAV 4/genética , Proteína GAP-43/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/ultraestrutura , Neuropeptídeos/genética , Cultura Primária de Células , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Elementos de Resposta , Transdução de Sinais
6.
FEBS Lett ; 591(14): 2089-2090, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28703309
7.
Front Pediatr ; 3: 69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380245

RESUMO

Osteosarcoma is the most common bone cancer in children and young adults. Surgery and multi-agent chemotherapy are the standard treatment regimens for this disease. New therapies are being investigated to improve overall survival in patients. Molecular targets that actively modulate cell processes, such as cell-cycle control, cell proliferation, metabolism, and apoptosis, have been studied, but it remains a challenge to develop novel, effective-targeted therapies to treat this heterogeneous and complex disease. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating cell processes including growth, development, and disease. miRNAs function as oncogenes or tumor suppressors to regulate gene and protein expression. Several studies have demonstrated the involvement of miRNAs in the pathogenesis of osteosarcoma with the potential for development in disease diagnostics and therapeutics. In this review, we discuss the current knowledge on the role of miRNAs and their target genes and evaluate their potential use as therapeutic agents in osteosarcoma. We also summarize the efficacy of inhibition of oncogenic miRNAs or expression of tumor suppressor miRNAs in preclinical models of osteosarcoma. Recent progress on systemic delivery as well as current applications for miRNAs as therapeutic agents has seen the advancement of miR-34a in clinical trials for adult patients with non-resectable primary liver cancer or metastatic cancer with liver involvement. We suggest a global approach to the understanding of the pathogenesis of osteosarcoma may identify candidate miRNAs as promising biomarkers for this rare disease.

8.
PLoS One ; 10(9): e0137461, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26331719

RESUMO

Injury to axons in the peripheral nervous system induces rapid and local regenerative responses to form a new growth cone, and to generate a retrogradely transporting injury signal. The evidence for essential roles of intra-axonal protein synthesis during regeneration is now compelling. MicroRNA (miRNA) has recently been recognized as a prominent player in post-transcriptional regulation of axonal protein synthesis. Here, we directly contrast temporal changes of miRNA levels in the sciatic nerve following injury, as compared to those in an uninjured nerve using deep sequencing. Small RNAs (<200 nucleotides in length) were fractionated from the proximal nerve stumps to improve the representation of differential miRNA levels. Of 141 axoplasmic miRNAs annotated, 63 rat miRNAs showed significantly differential levels at five time points following injury, compared to an uninjured nerve. The differential changes in miRNA levels responding to injury were processed for hierarchical clustering analyses, and used to predict target mRNAs by Targetscan and miRanda. By overlapping these predicted targets with 2,924 axonally localizing transcripts previously reported, the overlapping set of 214 transcripts was further analyzed by the Gene Ontology enrichment and Ingenuity Pathway Analyses. These results suggest the possibility that the potential targets for these miRNAs play key roles in numerous neurological functions involved in ER stress response, cytoskeleton dynamics, vesicle formation, and neuro-degeneration and-regeneration. Finally, our results suggest that miRNAs could play a direct role in regenerative response and may be manipulated to promote regenerative ability of injured nerves.


Assuntos
Axônios , MicroRNAs/fisiologia , Regeneração Nervosa/genética , Nervo Isquiático/fisiologia , Animais , Masculino , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA
9.
BMC Cell Biol ; 16: 24, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26382850

RESUMO

BACKGROUND: Endocytosis of activated EGF receptor (EGFR) to specific endocytic compartments is required to terminate EGF signaling. Trafficking of EGFR relies on microtubule tracks that transport the cargo vesicle to their intermediate and final destinations and can be modulated through posttranslational modification of tubulin including acetylation. Na,K-ATPase maintains intracellular sodium homeostasis, functions as a signaling scaffold and interacts with EGFR. Na,K-ATPase also binds to and is regulated by acetylated tubulin but whether there is a functional link between EGFR, Na,K-ATPase and tubulin acetylation is not known. RESULTS: EGF-induced sodium influx regulates EGFR trafficking through increased microtubule acetylation. Increased sodium influx induced either by sodium ionophores or Na,K-ATPase blockade mimicked the EGF-induced effects on EGFR trafficking through histone deacetylase (HDAC) 6 inactivation and accumulation of acetylated tubulin. In turn, blocking sodium influx reduced tubulin acetylation and EGF-induced EGFR turnover. Knockdown of HDAC6 reversed the effect of sodium influx indicating that HDAC6 is necessary to modulate sodium-dependent tubulin acetylation. CONCLUSIONS: These studies provide a novel regulatory mechanism to attenuate EGFR signaling in which EGF modulates EGFR trafficking through intracellular sodium-mediated HDAC6 inactivation and tubulin acetylation.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Histona Desacetilases/metabolismo , Sódio/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Transporte Biológico , Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Desacetilase 6 de Histona , Histona Desacetilases/genética , Humanos
10.
Nucleic Acids Res ; 43(15): 7432-46, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26152301

RESUMO

Interactions of RNA-binding proteins (RBPs) with their target transcripts are essential for regulating gene expression at the posttranscriptional level including mRNA export/localization, stability, and translation. ZBP1 and HuD are RBPs that play pivotal roles in mRNA transport and local translational control in neuronal processes. While HuD possesses three RNA recognition motifs (RRMs), ZBP1 contains two RRMs and four K homology (KH) domains that either increase target specificity or provide a multi-target binding capability. Here we used isolated cis-element sequences of the target mRNA to examine directly protein-RNA interactions in cell-free systems. We found that both ZBP1 and HuD bind the zipcode element in rat ß-actin mRNA's 3' UTR. Differences between HuD and ZBP1 were observed in their binding preference to the element. HuD showed a binding preference for U-rich sequence. In contrast, ZBP1 binding to the zipcode RNA depended more on the structural level, as it required the proper spatial organization of a stem-loop that is mainly determined by the U-rich element juxtaposed to the 3' end of a 5'-ACACCC-3' motif. On the basis of this work, we propose that ZBP1 and HuD bind to overlapping sites in the ß-actin zipcode, but they recognize different features of this target sequence.


Assuntos
Regiões 3' não Traduzidas , Actinas/genética , Proteína Semelhante a ELAV 4/metabolismo , RNA Mensageiro/química , Proteínas de Ligação a RNA/metabolismo , Actinas/metabolismo , Animais , Neurônios/química , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos
11.
J Neurosci ; 35(14): 5693-706, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855182

RESUMO

High mobility group (HMG) proteins concentrate in the nucleus, interacting with chromatin. Amphoterin is an HMG protein (HMGB1) that has been shown to have extranuclear functions and can be secreted from some cell types. Exogenous amphoterin can increase neurite growth, suggesting that the secreted protein may have growth promoting activities in neurons. Consistent with this, we show that depletion of amphoterin mRNA from cultured adult rat DRG neurons attenuates neurite outgrowth, pointing to autocrine or paracrine mechanisms for its growth-promoting effects. The mRNA encoding amphoterin localizes to axonal processes and we showed recently that its 3'-UTR is sufficient for axonal localization of heterologous transcripts (Donnelly et al., 2013). Here, we show that amphoterin mRNA is transported constitutively into axons of adult DRG neurons. A preconditioning nerve injury increases the levels of amphoterin protein in axons without a corresponding increase in amphoterin mRNA in the axons. A 60 nucleotide region of the amphoterin mRNA 3'-UTR is necessary and sufficient for its localization into axons of cultured sensory neurons. Amphoterin mRNA 3'-UTR is also sufficient for axonal localization in distal axons of DRG neurons in vivo. Overexpression of axonally targeted amphoterin mRNA increases axon outgrowth in cultured sensory neurons, but axon growth is not affected when the overexpressed mRNA is restricted to the cell body.


Assuntos
Axônios/metabolismo , Regulação da Expressão Gênica/genética , Proteína HMGB1/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/metabolismo , Células Receptoras Sensoriais/citologia , Regiões 3' não Traduzidas/genética , Animais , Axônios/efeitos dos fármacos , Transporte Biológico/genética , Células Cultivadas , Gânglios Espinais/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteína HMGB1/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fotodegradação , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução Genética
12.
J Neurochem ; 134(2): 193-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25919946

RESUMO

A set of specific precursor microRNAs (pre-miRNAs) are reported to localize into neuronal dendrites, where they could be processed locally to control synaptic protein synthesis and plasticity. However, it is not clear whether specific pre-miRNAs are also transported into distal axons to autonomously regulate intra-axonal protein synthesis. Here, we show that a subset of pre-miRNAs, whose mature miRNAs are enriched in axonal compartment of sympathetic neurons, are present in axons of neurons both in vivo and in vitro by quantitative PCR and by in situ hybridization. Some pre-miRNAs (let 7c-a and pre-miRs-16, 23a, 25, 125b-1, 433, and 541) showed elevated axonal levels, while others (pre-miRs-138-2, 185, and 221) were decreased in axonal levels following injury. Dicer and KSRP proteins are also present in distal axons, but Drosha is found restricted to the cell body. These findings suggest that specific pre-miRNAs are selected for localization into distal axons of sensory neurons and are presumably processed to mature miRNAs in response to extracellular stimuli. This study supports the notion that local miRNA biogenesis effectively provides another level of temporal control for local protein synthesis in axons.


Assuntos
Axônios/metabolismo , MicroRNAs/metabolismo , Biossíntese de Proteínas/fisiologia , Precursores de RNA/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Imunofluorescência , Hibridização in Situ Fluorescente , Masculino , Ratos , Ratos Sprague-Dawley
13.
Dev Neurobiol ; 74(3): 218-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23959706

RESUMO

Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in cell body responses to axotomy. Recent studies have begun to identify the protein products that contribute to these autonomous responses of axons. In the peripheral nervous system, intra-axonal protein synthesis has been implicated in the localized in vivo responses to neuropathic stimuli, and there is emerging evidence for protein synthesis in CNS axons in vivo. Despite that hundreds of mRNAs have now been shown to localize into the axonal compartment, knowledge of what RNA binding proteins are responsible for this is quite limited. Here, we review the current state of knowledge of RNA transport mechanisms and highlight recently uncovered mechanisms for dynamically altering the axonal transcriptome. Both changes in the levels or activities of components of the RNA transport apparatus and alterations in transcription of transported mRNAs can effectively shift the axonal mRNA population. Consistent with this, the axonal RNA population shifts with development, with changes in growth state, and in response to extracellular stimulation. Each of these events must impact the transcriptional and transport apparatuses of the neuron, thus directly and indirectly modifying the axonal transcriptome.


Assuntos
Axônios/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Animais , Humanos , Doenças do Sistema Nervoso/metabolismo , Transporte de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo
14.
PLoS One ; 8(11): e79255, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244461

RESUMO

The KH-type splicing regulatory protein (KSRP) promotes the decay of AU-rich element (ARE)-containing mRNAs. Although KSRP is expressed in the nervous system, very little is known about its role in neurons. In this study, we examined whether KSRP regulates the stability of the ARE-containing GAP-43 mRNA. We found that KSRP destabilizes this mRNA by binding to its ARE, a process that requires the presence of its fourth KH domain (KH4). Furthermore, KSRP competed with the stabilizing factor HuD for binding to these sequences. We also examined the functional consequences of KSRP overexpression and knockdown on the differentiation of primary hippocampal neurons in culture. Overexpression of full length KSRP or KSRP without its nuclear localization signal hindered axonal outgrowth in these cultures, while overexpression of a mutant protein without the KH4 domain that has less affinity for binding to GAP-43's ARE had no effect. In contrast, depletion of KSRP led to a rise in GAP-43 mRNA levels and a dramatic increase in axonal length, both in KSRP shRNA transfected cells and neurons cultured from Ksrp(+/-) and Ksrp(-/-) embryos. Finally we found that overexpression of GAP-43 rescued the axonal outgrowth deficits seen with KSRP overexpression, but only when cells were transfected with GAP-43 constructs containing 3' UTR sequences targeting the transport of this mRNA to axons. Together, our results suggest that KSRP is an important regulator of mRNA stability and axonal length that works in direct opposition to HuD to regulate the levels of GAP-43 and other ARE-containing neuronal mRNAs.


Assuntos
Axônios/metabolismo , Proteína GAP-43/metabolismo , Hipocampo/metabolismo , Células Piramidais/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Animais , Células Cultivadas , Proteína GAP-43/genética , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Hipocampo/embriologia , Camundongos , Ligação Proteica , RNA Mensageiro/metabolismo , Ratos , Transfecção
15.
J Neurosci ; 33(34): 13735-42, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966695

RESUMO

Many neuronal mRNAs are actively transported into distal axons. The 3' untranslated regions (UTRs) of axonal mRNAs often contain cues for their localization. The 3' UTR of neuritin mRNA was shown to be sufficient for localization into axons of hippocampal neurons. Here, we show that neuritin mRNA localizes into axons of rat sensory neurons, but this is predominantly driven by the 5' rather than 3' UTR. Neuritin mRNA shifts from cell body to axon predominantly after nerve crush injury, suggesting that it encodes a growth-associated protein. Consistent with this, overexpression of neuritin increases axon growth but only when its mRNA localizes into the axons.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Regiões 5' não Traduzidas/fisiologia , Axônios/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , RNA Mensageiro/metabolismo , Análise de Variância , Animais , Células Cultivadas , Gânglios Espinais/citologia , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Masculino , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fotodegradação , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Transfecção , Proteínas tau/metabolismo
16.
PLoS One ; 8(8): e71455, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951168

RESUMO

Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP) cells. Sonic hedgehog (Shh) is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs) and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL) in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias Cerebelares/genética , Cerebelo/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Histona Desacetilase 2/genética , Meduloblastoma/genética , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias Cerebelares/enzimologia , Neoplasias Cerebelares/patologia , Cerebelo/enzimologia , Cerebelo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Histona Desacetilase 2/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Meduloblastoma/enzimologia , Meduloblastoma/patologia , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Transdução de Sinais
17.
J Neurochem ; 126(6): 792-804, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23586486

RESUMO

Localized translation of axonal mRNAs contributes to developmental and regenerative axon growth. Although untranslated regions (UTRs) of many different axonal mRNAs appear to drive their localization, there has been no consensus RNA structure responsible for this localization. We recently showed that limited expression of ZBP1 protein restricts axonal localization of both ß-actin and GAP-43 mRNAs. ß-actin 3'UTR has a defined element for interaction with ZBP1, but GAP-43 mRNA shows no homology to this RNA sequence. Here, we show that an AU-rich regulatory element (ARE) in GAP-43's 3'UTR is necessary and sufficient for its axonal localization. Axonal GAP-43 mRNA levels increase after in vivo injury, and GAP-43 mRNA shows an increased half-life in regenerating axons. GAP-43 mRNA interacts with both HuD and ZBP1, and HuD and ZBP1 co-immunoprecipitate in an RNA-dependent fashion. Reporter mRNA with the GAP-43 ARE competes with endogenous ß-actin mRNA for axonal localization and decreases axon length and branching similar to the ß-actin 3'UTR competing with endogenous GAP-43 mRNA. Conversely, over-expressing GAP-43 coding sequence with its 3'UTR ARE increases axonal elongation and this effect is lost when just the ARE is deleted from GAP-43's 3'UTR. We have recently found that over-expression of GAP-43 using an axonally targeted construct with the 3'UTRs of GAP-43 promoted elongating growth of axons, while restricting the mRNA to the cell body with the 3'UTR of γ-actin had minimal effect on axon length. In this study, we show that the ARE in GAP-43's 3'UTR is responsible for localization of GAP-43 mRNA into axons and is sufficient for GAP-43 protein's role in elongating axonal growth.


Assuntos
Regiões 3' não Traduzidas/genética , Elementos Ricos em Adenilato e Uridilato/genética , Axônios/metabolismo , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Actinas/biossíntese , Actinas/genética , Animais , Axônios/ultraestrutura , Células Cultivadas , DNA/biossíntese , DNA/isolamento & purificação , Recuperação de Fluorescência Após Fotodegradação , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Imunoprecipitação , Hibridização in Situ Fluorescente , Masculino , RNA/biossíntese , RNA/genética , Ratos , Ratos Sprague-Dawley , Elementos Reguladores de Transcrição , Nervo Isquiático/metabolismo
18.
J Neurosci ; 33(8): 3311-22, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426659

RESUMO

Increasing evidence points to the importance of local protein synthesis for axonal growth and responses to axotomy, yet there is little insight into the functions of individual locally synthesized proteins. We recently showed that expression of a reporter mRNA with the axonally localizing ß-actin mRNA 3'UTR competes with endogenous ß-actin and GAP-43 mRNAs for binding to ZBP1 and axonal localization in adult sensory neurons (Donnelly et al., 2011). Here, we show that the 3'UTR of GAP-43 mRNA can deplete axons of endogenous ß-actin mRNA. We took advantage of this 3'UTR competition to address the functions of axonally synthesized ß-actin and GAP-43 proteins. In cultured rat neurons, increasing axonal synthesis of ß-actin protein while decreasing axonal synthesis of GAP-43 protein resulted in short highly branched axons. Decreasing axonal synthesis of ß-actin protein while increasing axonal synthesis of GAP-43 protein resulted in long axons with few branches. siRNA-mediated depletion of overall GAP-43 mRNA from dorsal root ganglia (DRGs) decreased the length of axons, while overall depletion of ß-actin mRNA from DRGs decreased the number of axon branches. These deficits in axon growth could be rescued by transfecting with siRNA-resistant constructs encoding ß-actin or GAP-43 proteins, but only if the mRNAs were targeted for axonal transport. Finally, in ovo electroporation of axonally targeted GAP-43 mRNA increased length and axonally targeted ß-actin mRNA increased branching of sensory axons growing into the chick spinal cord. These studies indicate that axonal translation of ß-actin mRNA supports axon branching and axonal translation of GAP-43 mRNA supports elongating growth.


Assuntos
Actinas/biossíntese , Axônios/metabolismo , Proteína GAP-43/fisiologia , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/metabolismo , Actinas/fisiologia , Animais , Axônios/fisiologia , Células Cultivadas , Embrião de Galinha , Proteína GAP-43/biossíntese , Masculino , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/fisiologia , Ratos , Ratos Sprague-Dawley
19.
J Cell Sci ; 126(Pt 1): 90-102, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23097042

RESUMO

Many neuronal mRNAs are transported from cell bodies into axons and dendrites. Localized translation of the mRNAs brings autonomy to these processes that can be vast distances from the cell body. For axons, these translational responses have been linked to growth and injury signaling, but there has been little information about local function of individual axonally synthesized proteins. In the present study, we show that axonal injury increases levels of the mRNA encoding neural membrane protein 35 (NMP35) in axons, with a commensurate decrease in the cell body levels of NMP35 mRNA. The 3' untranslated region (3'UTR) of NMP35 is responsible for this localization into axons. Previous studies have shown that NMP35 protein supports cell survival by inhibiting Fas-ligand-mediated apoptosis; however, these investigations did not distinguish functions of the locally generated NMP35 protein. Using axonally targeted versus cell-body-restricted NMP35 constructs, we show that NMP35 supports axonal growth, and overexpression of an axonally targeted NMP35 mRNA is sufficient to increase axonal outgrowth.


Assuntos
Transporte Axonal/fisiologia , Axônios/metabolismo , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Animais , Células Cultivadas , Imunofluorescência , Immunoblotting , Hibridização In Situ , Masculino , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley
20.
Mol Cell Neurosci ; 50(2): 136-46, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22522146

RESUMO

Sensory neurons transport a complex population of mRNAs into their axons, including many encoding ER chaperone proteins. Transport of the mRNA encoding the ER chaperone protein calreticulin is regulated through 3'UTR elements. In other cellular systems, translation of chaperone protein mRNAs can be regulated by ER stress. Here, we have asked if the translation of axonal calreticulin mRNA is regulated in a different manner than its transport into axons. Treatment with lysophosphatidic acid, which is known to trigger axon retraction and stimulate ER Ca(2+) release, caused a translation-dependent increase in axonal calreticulin protein levels. RNA sequences in the 5'UTR of calreticulin confer this translational control through a mechanism that requires an inactivating phosphorylation of eIF2α. In contrast to calreticulin, these signaling events do not activate axonal translation through ß-actin's 5'UTR. Together, these data indicate that stimulation of ER stress can regulate specificity of localized mRNA translation through 5'UTR elements.


Assuntos
Regiões 5' não Traduzidas/efeitos dos fármacos , Axônios/metabolismo , Calreticulina/biossíntese , Lisofosfolipídeos/farmacologia , Animais , Transporte Axonal/efeitos dos fármacos , Transporte Axonal/fisiologia , Axônios/efeitos dos fármacos , Calreticulina/genética , Células Cultivadas , Neurônios/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...