Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38001837

RESUMO

Exogenous or endogenous caffeine application confers resistance to diverse biotic stresses in plants. In this study, we demonstrate that endogenous caffeine in caffeine-producing rice (CPR) increases tolerance even to abiotic stresses such as water deficit. Caffeine produced by CPR plants influences the cytosolic Ca2+ ion concentration gradient. We focused on examining the expression of Ca2+-dependent protein kinase genes, a subset of the numerous proteins engaged in abiotic stress signaling. Under normal conditions, CPR plants exhibited increased expressions of seven OsCPKs (OsCPK10, OsCPK12, OsCPK21, OsCPK25, OsCPK26, OsCPK30, and OsCPK31) and biochemical modifications, including antioxidant enzyme (superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase) activity and non-enzymatic antioxidant (ascorbic acid) content. CPR plants exhibited more pronounced gene expression changes and biochemical alterations in response to water-deficit stress. CPR plants revealed increased expressions of 16 OsCPKs (OsCPK1, OsCPK2, OsCPK3, OsCPK4, OsCPK5, OsCPK6, OsCPK9, OsCPK10, OsCPK11, OsCPK12, OsCPK14, OsCPK16, OsCPK18, OsCPK22, OsCPK24, and OsCPK25) and 8 genes (OsbZIP72, OsLEA25, OsNHX1, OsRab16d, OsDREB2B, OsNAC45, OsP5CS, and OsRSUS1) encoding factors related to abiotic stress tolerance. The activity of antioxidant enzymes increased, and non-enzymatic antioxidants accumulated. In addition, a decrease in reactive oxygen species, an accumulation of malondialdehyde, and physiological alterations such as the inhibition of chlorophyll degradation and the protection of photosynthetic machinery were observed. Our results suggest that caffeine is a natural chemical that increases the potential ability of rice to cope with water-deficit stress and provides robust resistance by activating a rapid and comprehensive resistance mechanism in the case of water-deficit stress. The discovery, furthermore, presents a new approach for enhancing crop tolerance to abiotic stress, including water deficit, via the utilization of a specific natural agent.

2.
Plants (Basel) ; 12(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986936

RESUMO

Cold acclimation refers to a phenomenon in which plants become more tolerant to freezing after exposure to non-lethal low temperatures. Aulacomnium turgidum (Wahlenb.) Schwaegr is a moss found in the Arctic that can be used to study the freezing tolerance of bryophytes. To improve our understanding of the cold acclimation effect on the freezing tolerance of A. turgidum, we compared the electrolyte leakage of protonema grown at 25 °C (non-acclimation; NA) and at 4 °C (cold acclimation; CA). Freezing damage was significantly lower in CA plants frozen at -12 °C (CA-12) than in NA plants frozen at -12 °C (NA-12). During recovery at 25 °C, CA-12 demonstrated a more rapid and greater level of the maximum photochemical efficiency of photosystem II than NA-12, indicating a greater recovery capacity for CA-12 compared to NA-12. For the comparative analysis of the transcriptome between NA-12 and CA-12, six cDNA libraries were constructed in triplicate, and RNA-seq reads were assembled into 45,796 unigenes. The differential gene expression analysis showed that a significant number of AP2 transcription factor genes and pentatricopeptide repeat protein-coding genes related to abiotic stress and the sugar metabolism pathway were upregulated in CA-12. Furthermore, starch and maltose concentrations increased in CA-12, suggesting that cold acclimation increases freezing tolerance and protects photosynthetic efficiency through the accumulation of starch and maltose in A. turgidum. A de novo assembled transcriptome can be used to explore genetic sources in non-model organisms.

3.
Mitochondrial DNA B Resour ; 7(4): 580-582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386626

RESUMO

Citrus erythrosa (Dongjeongkyool in Korean) is a medicinal citrus landrace that grows in Korea. In this study, we characterized the complete chloroplast (Cp) genome (160,120 bp) of C. erythrosa. The Cp genome was consisted of 4 distinct regions: a large single copy (87,731 bp), a small single copy (18,393 bp), and a pair of inverted repeat regions (26,998 bp). The Cp genome encodes a total of 133 genes including 88 protein-coding genes, 37 tRNA genes and 8 rRNA genes. The phylogenetic analysis reveals that C. erythrosa is a sister group to the clade of species including C. reticulata within the genus Citrus.

4.
Front Plant Sci ; 12: 734500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650582

RESUMO

The Antarctic flowering plant Deschampsia antarctica is highly sensitive to climate change and has shown rapid population increases during regional warming of the Antarctic Peninsula. Several studies have examined the physiological and biochemical changes related to environmental stress tolerance that allow D. antarctica to colonize harsh Antarctic environments; however, the molecular mechanisms of its responses to environmental changes remain poorly understood. To elucidate the survival strategies of D. antarctica in Antarctic environments, we investigated the functions of actin depolymerizing factor (ADF) in this species. We identified eight ADF genes in the transcriptome that were clustered into five subgroups by phylogenetic analysis. DaADF3, which belongs to a monocot-specific clade together with cold-responsive ADF in wheat, showed significant transcriptional induction in response to dehydration and cold, as well as under Antarctic field conditions. Multiple drought and low-temperature responsive elements were identified as possible binding sites of C-repeat-binding factors in the promoter region of DaADF3, indicating a close relationship between DaADF3 transcription control and abiotic stress responses. To investigate the functions of DaADF3 related to abiotic stresses in vivo, we generated transgenic rice plants overexpressing DaADF3. These transgenic plants showed greater tolerance to low-temperature stress than the wild-type in terms of survival rate, leaf chlorophyll content, and electrolyte leakage, accompanied by changes in actin filament organization in the root tips. Together, our results imply that DaADF3 played an important role in the enhancement of cold tolerance in transgenic rice plants and in the adaptation of D. antarctica to its extreme environment.

5.
Mitochondrial DNA B Resour ; 5(3): 3719-3720, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33367074

RESUMO

Citrus sunki (Jinkyool) is a medicinal landrace citrus belonging to the Rutaceae family. We determined the complete chloroplast genome (160,699 bp) of C. sunki CRS0085 in Jeju Island, Korea. The genome is composed of four distinct parts; a large single copy of 87,918 bp, a small single copy of 21,355 bp, and a pair of inverted repeat regions of 25,713 bp. A total of 134 genes including 89 protein-coding genes, 37 tRNA genes, and eight rRNA genes were identified. The phylogenetic tree showed that C. sunki CRS0085 has the closest relationship with C. reticulata within genus Citrus.

6.
Plants (Basel) ; 9(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825403

RESUMO

The plant U-box (PUB) protein is the E3 ligase that plays roles in the degradation or post-translational modification of target proteins. In rice, 77 U-box proteins were identified and divided into eight classes according to the domain configuration. We performed a phylogenomic analysis by integrating microarray expression data under abiotic stress to the phylogenetic tree context. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) expression analyses identified that eight, twelve, and eight PUB family genes are associated with responses to drought, salinity, and cold stress, respectively. In total, 16 genes showed increased expression in response to three abiotic stresses. Among them, the expression of OsPUB2 in class II and OsPUB33, OsPUB39, and OsPUB41 in class III increased in all three abiotic stresses, indicating their involvement in multiple abiotic stress regulation. In addition, we identified the circadian rhythmic expression for three out of 16 genes responding to abiotic stress through meta-microarray expression data analysis. Among them, OsPUB4 is predicted to be involved in the rice GIGANTEA (OsGI)-mediating diurnal rhythm regulating mechanism. In the last, we constructed predicted protein-protein interaction networks associated with OsPUB4 and OsGI. Our analysis provides essential information to improve environmental stress tolerance mediated by the PUB family members in rice.

7.
Plants (Basel) ; 9(1)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963727

RESUMO

Promoters are key components for the application of biotechnological techniques in crop plants. Reporter genes such as GUS or GFP have been used to test the activity of promoters for diverse applications. A huge number of T-DNAs carrying promoterless GUS near their right borders have been inserted into the rice genome, and 105,739 flanking sequence tags from rice lines with this T-DNA insertion have been identified, establishing potential promoter trap lines for 20,899 out of 55,986 genes in the rice genome. Anatomical meta-expression data and information on abiotic stress related to these promoter trap lines enable us to quickly identify new promoters associated with various expression patterns. In the present report, we introduce a strategy to identify new promoters in a very short period of time using a combination of meta-expression analysis and promoter trap lines.

8.
Front Plant Sci ; 11: 609847, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584753

RESUMO

Mosses number about 13,000 species and are an important resource for the study of the plant evolution that occurred during terrestrial colonization by plants. Recently, the physiological and metabolic characteristics that distinguish mosses from terrestrial plants have received attention. In the Arctic, in particular, mosses developed their own distinct physiological features to adapt to the harsh environment. However, little is known about the molecular mechanisms by which Arctic mosses survive in extreme environments due to the lack of basic knowledge and tools such as genome sequences and genetic transfection methods. In this study, we report the axenic cultivation and transfection of Arctic Bryum sp. KMR5045, as a model for bioengineering of Arctic mosses. We also found that the inherent low-temperature tolerance of KMR5045 permitted it to maintain slow growth even at 2°C, while the model moss species Physcomitrium patens failed to grow at all, implying that KMR5045 is suitable for studies of cold-tolerance mechanisms. To achieve genetic transfection of KMR5045, some steps of the existing protocol for P. patens were modified. First, protoplasts were isolated using 1% driselase solution. Second, the appropriate antibiotic was identified and its concentration was optimized for the selection of transfectants. Third, the cell regeneration period before transfer to selection medium was extended to 9 days. As a result, KMR5045 transfectants were successfully obtained and confirmed transfection by detection of intracellular Citrine fluorescence derived from expression of a pAct5:Citrine transgene construct. This is the first report regarding the establishment of a genetic transfection method for an Arctic moss species belonging to the Bryaceae. The results of this study will contribute to understanding the function of genes involved in environmental adaptation and to application for production of useful metabolites derived from stress-tolerant mosses.

9.
Int J Mol Sci ; 20(23)2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771205

RESUMO

Plant-growth-promoting bacteria (PGPB) are beneficial microorganisms that can also protect against disease and environmental stress. Silicon (Si) is the second most abundant element in soil, and is known to increase plant growth, grain yield, resistance to biotic stress, and tolerance to abiotic stress. Combined treatment of PGPB and Si has been shown to further enhance plant growth and crop yield. To determine the global effects of the PGPB and Si on rice growth, we compared rice plants treated with Paenibacillus yonginensis DCY84T (DCY84T) and Si with untreated rice. To identify the genes that respond to DCY84T+Si treatment in rice, we performed an RNA-Seq transcriptome analysis by sampling treated and untreated roots on a weekly basis for three weeks. Overall, 576 genes were upregulated, and 394 genes were downregulated in treated roots, using threshold fold-changes of at least 2 (log2) and p-values < 0.05. Gene ontology analysis showed that phenylpropanoids and the L-phenylalanine metabolic process were prominent in the upregulated genes. In a metabolic overview analysis using the MapMan toolkit, pathways involving phenylpropanoids and ethylene were strongly associated with upregulated genes. The functions of seven upregulated genes were identified as being associated with drought stress through a literature search, and a stress experiment confirmed that plants treated with DCY84T+Si exhibited greater drought tolerance than the untreated control plants. Furthermore, the predicted protein-protein interaction network analysis associated with DCY84T+ Si suggests mechanisms underlying growth promotion and stress tolerance.


Assuntos
Oryza/metabolismo , Plântula/metabolismo , Silício/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/fisiologia , Paenibacillus/metabolismo
10.
Biomed Res Int ; 2019: 6534745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396532

RESUMO

Chloroplasts are intracellular semiautonomous organelles central to photosynthesis and are essential for plant growth and yield. The significance of the function of chloroplast-related genes in response to climate change has not been well studied in crops. In the present study, the initial focus was on genes that were predicted to be located in the chloroplast genome in rice, a model crop plant, with genes either preferentially expressed in the leaf or ubiquitously expressed in all organs. The characteristics were analyzed by Gene Ontology (GO) enrichment and MapMan functional classification tools. It was then identified that 110 GO terms (45 for leaf expression and 65 for ubiquitous expression) and 1,695 genes mapped to MapMan overviews were strongly associated with chloroplasts. In particular, the MapMan cellular response overview revealed a close association between heat stress response and chloroplast-related genes in rice. Moreover, features of these genes in response to abiotic stress were analyzed using a large-scale publicly available transcript dataset. Consequently, the expression of 215 genes was found to be upregulated in response to high temperature stress. Conversely, genes that responded to other stresses were extremely limited. In other words, chloroplast-related genes were found to affect abiotic stress response mainly through high temperature response, with little effect on response to drought and salinity stress. These results suggest that genes involved in diurnal rhythm in the leaves participate in the reaction to recognize temperature changes in the environment. Furthermore, the predicted protein-protein interaction network analysis associated with high temperature stress is expected to provide a very important basis for the study of molecular mechanisms by which chloroplasts will respond to future climate changes.


Assuntos
Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Resposta ao Choque Térmico/fisiologia , Oryza/metabolismo , Estresse Salino/fisiologia , Cloroplastos/genética , Desidratação/genética , Desidratação/metabolismo , Oryza/genética
11.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31169887

RESUMO

Transcription factors (TFs) are an important class of regulatory molecules. Despite their importance, only a small number of genes encoding TFs have been characterized in Oryza sativa (rice), often because gene duplication and functional redundancy complicate their analysis. To address this challenge, we developed a web-based tool called the Rice Transcription Factor Phylogenomics Database (RTFDB) and demonstrate its application for predicting TF function. The RTFDB hosts transcriptome and co-expression analyses. Sources include high-throughput data from oligonucleotide microarray (Affymetrix and Agilent) as well as RNA-Seq-based expression profiles. We used the RTFDB to identify tissue-specific and stress-related gene expression. Subsequently, 273 genes preferentially expressed in specific tissues or organs, 455 genes showing a differential expression pattern in response to 4 abiotic stresses, 179 genes responsive to infection of various pathogens and 512 genes showing differential accumulation in response to various hormone treatments were identified through the meta-expression analysis. Pairwise Pearson correlation coefficient analysis between paralogous genes in a phylogenetic tree was used to assess their expression collinearity and thereby provides a hint on their genetic redundancy. Integrating transcriptome with the gene evolutionary information reveals the possible functional redundancy or dominance played by paralog genes in a highly duplicated genome such as rice. With this method, we estimated a predominant role for 83.3% (65/78) of the TF or transcriptional regulator genes that had been characterized via loss-of-function studies. In this regard, the proposed method is applicable for functional studies of other plant species with annotated genome.


Assuntos
Perfilação da Expressão Gênica , Internet , Oryza , Proteínas de Plantas , Software , Transcriptoma , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905964

RESUMO

Chlorophyll breakdown is a vital catabolic process of leaf senescence as it allows the recycling of nitrogen and other nutrients. In the present study, we isolated rice senescence-induced receptor-like kinase (OsSRLK), whose transcription was upregulated in senescing rice leaves. The detached leaves of ossrlk mutant (ossrlk) contained more green pigment than those of the wild type (WT) during dark-induced senescence (DIS). HPLC and immunoblot assay revealed that degradation of chlorophyll and photosystem II proteins was repressed in ossrlk during DIS. Furthermore, ultrastructural analysis revealed that ossrlk leaves maintained the chloroplast structure with intact grana stacks during dark incubation; however, the retained green color and preserved chloroplast structures of ossrlk did not enhance the photosynthetic competence during age-dependent senescence in autumn. In ossrlk, the panicles per plant was increased and the spikelets per panicle were reduced, resulting in similar grain productivity between WT and ossrlk. By transcriptome analysis using RNA sequencing, genes related to phytohormone, senescence, and chlorophyll biogenesis were significantly altered in ossrlk compared to those in WT during DIS. Collectively, our findings indicate that OsSRLK may degrade chlorophyll by participating in a phytohormone-mediated pathway.


Assuntos
Clorofila/metabolismo , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Escuridão , Grão Comestível , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação , Oryza/genética , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética
13.
J Plant Physiol ; 220: 11-23, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29132026

RESUMO

Plant root systems play essential roles in developmental processes, such as the absorption of water and inorganic nutrients, and structural support. Gene expression is affected by growth conditions and the genetic background of plants. To identify highly conserved root-preferred genes in rice across diverse growth conditions and varieties, we used two independent meta-anatomical expression profiles based on a large collection of Affymetrix and Agilent 44K microarray data sets available for public use. We then identified 684 loci with root-preferred expression, which were validated with in silico analysis using both meta-expression profiles. The expression patterns of four candidate genes were confirmed in vivo by monitoring expression of ß-glucuronidase under control of the candidate-gene promoters, providing new tools to manipulate agronomic traits associated with roots. We also utilized real-time PCR to examine the root-preferential expression of 14 genes across four rice varieties, including japonica and indica cultivars. Using a database of rice genes with known functions, we identified the reported functions of 39 out of the 684 candidate genes. Sixteen genes are directly involved in root development, while the remaining are involved in processes indirectly related to root development (i.e., soil-stress tolerance or growth retardation). This indicates the importance of our candidate genes for studies on root development and function. Gene ontology enrichment analysis in the 'biological processes' category revealed that root-preferred genes in rice are closely associated with nutrient transport-related genes, indicating that the primary role of roots is the uptake of nutrients from soil. In addition, predicted protein-protein interaction analysis suggested a molecular network for root development composed of 215 interactions associated with 44 root-preferred or root development-related genes. Taken together, our data provide an important foundation for future research on root development in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
14.
Plant Mol Biol ; 96(1-2): 17-34, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29086189

RESUMO

KEY MESSAGE: This work suggests 2020 potential candidates in rice for the functional annotation of unannotated genes using meta-analysis of anatomical samples derived from microarray and RNA-seq technologies and this information will be useful to identify novel morphological agronomic traits. Although the genome of rice (Oryza sativa) has been sequenced, 14,365 genes are considered unannotated because they lack putative annotation information. According to the Rice Genome Annotation Project Database ( http://rice.plantbiology.msu.edu/ ), the proportion of functionally characterized unannotated genes (0.35%) is quite limited when compared with the approximately 3.9% of annotated genes with assigned putative functions. Researchers require additional information to help them investigate the molecular mechanisms associated with those unannotated genes. To determine which of them might regulate morphological or physiological traits in the rice genome, we conducted a meta-analysis of expression data that covered a wide range of tissue/organ samples. Overall, 2020 genes showed cultivar-, tissue-, or organ-preferential patterns of expression. Representative candidates from featured groups were validated by RT-PCR, and the GUS reporter system was used to validate the expression of genes that were clustered according to their leaf or root preference. Taking a molecular and genetics approach, we examined meta-expression data and found that 127 genes were differentially expressed between japonica and indica rice cultivars. This is potentially significant for future agronomic applications. We also used a T-DNA insertional mutant and performed a co-expression network analysis of Sword shape dwarf1 (SSD1), a gene that regulates cell division. This network was refined via RT-PCR analysis. Our results suggested that SSD1 represses the expression of four genes related to the processes of DNA replication or cell division and provides insight into possible molecular mechanisms. Together, these strategies present a valuable tool for in-depth characterization of currently unannotated genes.


Assuntos
Anotação de Sequência Molecular/métodos , Oryza/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Front Plant Sci ; 8: 580, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491065

RESUMO

Water deficiencies are one of the most serious challenges to crop productivity. To improve our understanding of soil moisture stress, we performed RNA-Seq analysis using roots from 4-week-old rice seedlings grown in soil that had been subjected to drought conditions for 2-3 d. In all, 1,098 genes were up-regulated in response to soil moisture stress for 3 d, which causes severe damage in root development after recovery, unlikely that of 2 d. Comparison with previous transcriptome data produced in drought condition indicated that more than 68% of our candidate genes were not previously identified, emphasizing the novelty of our transcriptome analysis for drought response in soil condition. We then validated the expression patterns of two candidate genes using a promoter-GUS reporter system in planta and monitored the stress response with novel molecular markers. An integrating omics tool, MapMan analysis, indicated that RING box E3 ligases in the ubiquitin-proteasome pathways are significantly stimulated by induced drought. We also analyzed the functions of 66 candidate genes that have been functionally investigated previously, suggesting the primary roles of our candidate genes in resistance or tolerance relating traits including drought tolerance (29 genes) through literature searches besides diverse regulatory roles of our candidate genes for morphological traits (15 genes) or physiological traits (22 genes). Of these, we used a T-DNA insertional mutant of rice phytochrome B (OsPhyB) that negatively regulates a plant's degree of tolerance to water deficiencies through the control of total leaf area and stomatal density based on previous finding. Unlike previous result, we found that OsPhyB represses the activity of ascorbate peroxidase and catalase mediating reactive oxygen species (ROS) processing machinery required for drought tolerance of roots in soil condition, suggesting the potential significance of remaining uncharacterized candidate genes for manipulating drought tolerance in rice.

16.
Rice (N Y) ; 9(1): 40, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27540739

RESUMO

BACKGROUND: Protein kinases catalyze the transfer of a phosphate moiety from a phosphate donor to the substrate molecule, thus playing critical roles in cell signaling and metabolism. Although plant genomes contain more than 1000 genes that encode kinases, knowledge is limited about the function of each of these kinases. A major obstacle that hinders progress towards kinase characterization is functional redundancy. To address this challenge, we previously developed the rice kinase database (RKD) that integrated omics-scale data within a phylogenetics context. RESULTS: An updated version of rice kinase database (RKD) that contains metadata derived from NCBI GEO expression datasets has been developed. RKD 2.0 facilitates in-depth transcriptomic analyses of kinase-encoding genes in diverse rice tissues and in response to biotic and abiotic stresses and hormone treatments. We identified 261 kinases specifically expressed in particular tissues, 130 that are significantly up- regulated in response to biotic stress, 296 in response to abiotic stress, and 260 in response to hormones. Based on this update and Pearson correlation coefficient (PCC) analysis, we estimated that 19 out of 26 genes characterized through loss-of-function studies confer dominant functions. These were selected because they either had paralogous members with PCC values of <0.5 or had no paralog. CONCLUSION: Compared with the previous version of RKD, RKD 2.0 enables more effective estimations of functional redundancy or dominance because it uses comprehensive expression profiles rather than individual profiles. The integrated analysis of RKD with PCC establishes a single platform for researchers to select rice kinases for functional analyses.

17.
Rice (N Y) ; 9(1): 17, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27076183

RESUMO

BACKGROUND: Rice is one of the most important food crops for humans. To improve the agronomical traits of rice, the functions of more than 1,000 rice genes have been recently characterized and summarized. The completed, map-based sequence of the rice genome has significantly accelerated the functional characterization of rice genes, but progress remains limited in assigning functions to all predicted non-transposable element (non-TE) genes, estimated to number 37,000-41,000. RESULTS: The International Rice Functional Genomics Consortium (IRFGC) has generated a huge number of gene-indexed mutants by using mutagens such as T-DNA, Tos17 and Ds/dSpm. These mutants have been identified by 246,566 flanking sequence tags (FSTs) and cover 65 % (25,275 of 38,869) of the non-TE genes in rice, while the mutation ratio of TE genes is 25.7 %. In addition, almost 80 % of highly expressed non-TE genes have insertion mutations, indicating that highly expressed genes in rice chromosomes are more likely to have mutations by mutagens such as T-DNA, Ds, dSpm and Tos17. The functions of around 2.5 % of rice genes have been characterized, and studies have mainly focused on transcriptional and post-transcriptional regulation. Slow progress in characterizing the function of rice genes is mainly due to a lack of clues to guide functional studies or functional redundancy. These limitations can be partially solved by a well-categorized functional classification of FST genes. To create this classification, we used the diverse overviews installed in the MapMan toolkit. Gene Ontology (GO) assignment to FST genes supplemented the limitation of MapMan overviews. CONCLUSION: The functions of 863 of 1,022 known genes can be evaluated by current FST lines, indicating that FST genes are useful resources for functional genomic studies. We assigned 16,169 out of 29,624 FST genes to 34 MapMan classes, including major three categories such as DNA, RNA and protein. To demonstrate the MapMan application on FST genes, transcriptome analysis was done from a rice mutant of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) gene with FST. Mapping of 756 down-regulated genes in dxr mutants and their annotation in terms of various MapMan overviews revealed candidate genes downstream of DXR-mediating light signaling pathway in diverse functional classes such as the methyl-D-erythritol 4-phosphatepathway (MEP) pathway overview, photosynthesis, secondary metabolism and regulatory overview. This report provides a useful guide for systematic phenomics and further applications to enhance the key agronomic traits of rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...