Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(46): 40286-40293, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30358984

RESUMO

A method for significantly increasing the growth rates (GRs) of high- k oxide thin films grown via plasma-enhanced atomic layer deposition (PE-ALD) by enhancing the plasma density through the addition of Ar gas to the O2 plasma oxidant was developed. This approach led to improvements of ∼60% in the saturation GRs of PE-ALD ZrO2, HfO2, and SiO2. Furthermore, despite the significantly higher GR enabled by PE-ALD, the mechanical and dielectric properties of the PE-ALD oxide films were similar or even superior to those of films grown via the conventional O2 plasma process. Optical emission spectroscopy analyses in conjunction with theoretical calculation of the electron energy distribution function revealed that adding Ar gas to the O2 plasma increased the density of high-energy electrons, thereby generating more O2 plasma species, such as ions and radicals, which played a key role in improving the GRs and the properties of the films. This promising approach is expected to facilitate the high-volume manufacturing of films via PE-ALD, especially for use as gate insulators in thin-film transistor-based devices in the display industry.

2.
ACS Appl Mater Interfaces ; 9(47): 41607-41617, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29111636

RESUMO

The reaction mechanism of area-selective atomic layer deposition (AS-ALD) of Al2O3 thin films using self-assembled monolayers (SAMs) was systematically investigated by theoretical and experimental studies. Trimethylaluminum (TMA) and H2O were used as the precursor and oxidant, respectively, with octadecylphosphonic acid (ODPA) as an SAM to block Al2O3 film formation. However, Al2O3 layers began to form on the ODPA SAMs after several cycles, despite reports that CH3-terminated SAMs cannot react with TMA. We showed that TMA does not react chemically with the SAM but is physically adsorbed, acting as a nucleation site for Al2O3 film growth. Moreover, the amount of physisorbed TMA was affected by the partial pressure. By controlling it, we developed a new AS-ALD Al2O3 process with high selectivity, which produces films of ∼60 nm thickness over 370 cycles. The successful deposition of Al2O3 thin film patterns using this process is a breakthrough technique in the field of nanotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...