Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 16349, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004988

RESUMO

Recent progress achieved in metal-assisted chemical etching (MACE) has enabled the production of high-quality micropillar arrays for various optoelectronic applications. Si micropillars produced by MACE often show a porous Si/SiOx shell on crystalline pillar cores introduced by local electrochemical reactions. In this paper, we report the distinct optoelectronic characteristics of the porous Si/SiOx shell correlated to their chemical compositions. Local photoluminescent (PL) images obtained with an immersion oil objective lens in confocal microscopy show a red emission peak (≈ 650 nm) along the perimeter of the pillars that is threefold stronger compared to their center. On the basis of our analysis, we find an unexpected PL increase (≈ 540 nm) at the oil/shell interface. We suggest that both PL enhancements are mainly attributed to the porous structures, a similar behavior observed in previous MACE studies. Surface potential maps simultaneously recorded with topography reveal a significantly high surface potential on the sidewalls of MACE-synthesized pillars (+ 0.5 V), which is restored to the level of planar Si control (- 0.5 V) after removing SiOx in hydrofluoric acid. These distinct optoelectronic characteristics of the Si/SiOx shell can be beneficial for various sensor architectures.

2.
Appl Microsc ; 50(1): 17, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-33580446

RESUMO

Recent advances in fabrication have enabled radial-junction architectures for cost-effective and high-performance optoelectronic devices. Unlike a planar PN junction, a radial-junction geometry maximizes the optical interaction in the three-dimensional (3D) structures, while effectively extracting the generated carriers via the conformal PN junction. In this paper, we report characterizations of radial PN junctions that consist of p-type Si micropillars created by deep reactive-ion etching (DRIE) and an n-type layer formed by phosphorus gas diffusion. We use electron-beam induced current (EBIC) microscopy to access the 3D junction profile from the sidewall of the pillars. Our EBIC images reveal uniform PN junctions conformally constructed on the 3D pillar array. Based on Monte-Carlo simulations and EBIC modeling, we estimate local carrier separation/collection efficiency that reflects the quality of the PN junction. We find the EBIC efficiency of the pillar array increases with the incident electron beam energy, consistent with the EBIC behaviors observed in a high-quality planar PN junction. The magnitude of the EBIC efficiency of our pillar array is about 70% at 10 kV, slightly lower than that of the planar device (≈ 81%). We suggest that this reduction could be attributed to the unpassivated pillar surface and the unintended recombination centers in the pillar cores introduced during the DRIE processes. Our results support that the depth-dependent EBIC approach is ideally suitable for evaluating PN junctions formed on micro/nanostructured semiconductors with various geometry.

3.
ACS Appl Mater Interfaces ; 11(50): 47037-47046, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31747519

RESUMO

Solar cells made of polycrystalline thin-films can outperform their single-crystalline counterparts despite the presence of grain boundaries (GBs). To unveil the influence of GBs, high spatial resolution characterization techniques are needed to measure local properties in their vicinity. However, results obtained using single technique may provide limited aspects about the GB effect. Here, we employ two techniques, near-field scanning photocurrent microscopy (NSPM) and scanning transmission electron microscope based cathodoluminescence spectroscopy (STEM-CL), to characterize CdTe solar cells at the nanoscale. The signal contrast from the grain interiors (GIs) to the GBs, for high-efficiency cells where CdTe is deposited at a high substrate temperature (500 °C) and treated by CdCl2, is found reverse from one technique to another. NSPM reveals increased photocurrents at the GBs, while STEM-CL shows reduced CL intensity and energy redshifts of the spectral peak at the GBs. The results are attributed to the increased nonradiative recombination and the band bending mediated by the surface defects and the shallow-level defects at GBs, respectively. We discuss the advantages of sample geometry for room-temperature STEM-CL and present numerical simulations as well as analytical models to extract the ratio of GB recombination velocity to minority carrier diffusivity that can be used for evaluating the GB effect in other polycrystalline solar cells.

4.
Nanoscale ; 9(23): 7771-7780, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28426088

RESUMO

Improving the power conversion efficiency of photovoltaic (PV) devices is challenging because the generation, separation and collection of electron-hole pairs are strongly dependent on details of the nanoscale chemical composition and defects which are often poorly known. In this work, two novel scanning probe nano-spectroscopy techniques, direct-transmission near-field scanning optical microscopy (dt-NSOM) and photothermal induced resonance (PTIR), are implemented to probe the distribution of defects and the bandgap variation in thin lamellae extracted from polycrystalline CdTe PV devices. dt-NSOM provides high-contrast spatially-resolved maps of light transmitted through the sample at selected wavelengths. PTIR provides absorption maps and spectra over a broad spectral range, from visible to mid-infrared. Results show variation of the bandgap through the CdTe thickness and from grain to grain that is spatially uncorrelated with the distributions of shallow and deep defects.

5.
J Appl Phys ; 120(9)2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27881882

RESUMO

Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.

6.
Nanotechnology ; 26(29): 295401, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26135502

RESUMO

Electron beam induced current (EBIC) is a powerful technique which measures the charge collection efficiency of photovoltaics with sub-micron spatial resolution. The exciting electron beam results in a high generation rate density of electron-hole pairs, which may drive the system into nonlinear regimes. An analytic model is presented which describes the EBIC response when the total electron-hole pair generation rate exceeds the rate at which carriers are extracted by the photovoltaic cell, and charge accumulation and screening occur. The model provides a simple estimate of the onset of the high injection regime in terms of the material resistivity and thickness, and provides a straightforward way to predict the EBIC lineshape in the high injection regime. The model is verified by comparing its predictions to numerical simulations in one- and two-dimensions. Features of the experimental data, such as the magnitude and position of maximum collection efficiency versus electron beam current, are consistent with the three-dimensional model.

7.
Science ; 343(6166): 66-9, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24310609

RESUMO

We report a strategy for realizing tunable electrical conductivity in metal-organic frameworks (MOFs) in which the nanopores are infiltrated with redox-active, conjugated guest molecules. This approach is demonstrated using thin-film devices of the MOF Cu3(BTC)2 (also known as HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) infiltrated with the molecule 7,7,8,8-tetracyanoquinododimethane (TCNQ). Tunable, air-stable electrical conductivity over six orders of magnitude is achieved, with values as high as 7 siemens per meter. Spectroscopic data and first-principles modeling suggest that the conductivity arises from TCNQ guest molecules bridging the binuclear copper paddlewheels in the framework, leading to strong electronic coupling between the dimeric Cu subunits. These ohmically conducting porous MOFs could have applications in conformal electronic devices, reconfigurable electronics, and sensors.

8.
Chem Commun (Camb) ; 49(9): 907-9, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23247801

RESUMO

The binding process of quantum dots and DNA origami was monitored using a 3D, real-time, single-particle tracking system. Single-molecule binding events were directly observed and precise measurements of the diffusion coefficient and second-order photon correlation function, g(2)(τ), were combined to distinguish free quantum dots from different conjugates of nQdot-origami.


Assuntos
DNA/química , Pontos Quânticos , Sítios de Ligação , Difusão , Conformação de Ácido Nucleico
9.
Nano Lett ; 10(8): 2897-902, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698602

RESUMO

We report a crossed-nanowire molecular junction array platform that enables direct measurement of current-voltage-temperature characteristics simultaneously with inelastic electron tunneling and Raman vibrational spectra on the same junction. Measurements on dithiol-terminated oligo(phenylene-ethynylene) junctions show both spectroscopies interrogate the gap-confined molecules to reveal distinct molecular features. This versatile platform allows investigation of advanced phenomena such as molecular switching and cooperative effects with the flexible ability to scale both the junction geometries and array sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...