Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Materials (Basel) ; 17(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930272

RESUMO

Electrospun nanofibers have been used as wound dressings to protect skin from infection and promote wound healing. In this study, we developed polyvinylpyrrolidone (PVP)/silicon dioxide (SD) composite nanofibers for the delivery of probiotic Saccharomyces cerevisiae (SC), which potentially aids in wound healing. PVP/SD composite nanofibers were optimized through electrospinning, and bead-free nanofibers with an average diameter of 624.7 ± 99.6 nm were fabricated. Next, SC, a wound-healing material, was loaded onto the PVP/SD composite nanofibers. SC was encapsulated in nanofibers, and nanofibers were prepared using SC, PVP, SD, water, and ethanol in a ratio of 3:4:0.1:4.8:1.2. The formation of smooth nanofibers with protrusions around SC was confirmed using SEM. Nanofiber dressing properties were physicochemically and mechanically characterized by evaluating SEM, DSC, XRD, and FTIR images, tensile strength, and elongation at break. Additionally, a release test of active substances was performed. The absence of interactions between SC, PVP, and SD was confirmed through physicochemical evaluation, and SEM images showed that the nanofiber dressing contained SC and had a porous structure. It also showed a 100% release of SC within 30 min. Overall, our study showed that SC-loaded PVP/SD composite nanofibers prepared using the electrospinning method are promising wound dressings.

2.
Neurospine ; 21(1): 30-43, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38569629

RESUMO

OBJECTIVE: This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise. METHODS: Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics-compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)-from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model. RESULTS: The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees. CONCLUSION: The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.

3.
J Biomed Inform ; 149: 104576, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101690

RESUMO

INTRODUCTION: Machine learning algorithms are expected to work side-by-side with humans in decision-making pipelines. Thus, the ability of classifiers to make reliable decisions is of paramount importance. Deep neural networks (DNNs) represent the state-of-the-art models to address real-world classification. Although the strength of activation in DNNs is often correlated with the network's confidence, in-depth analyses are needed to establish whether they are well calibrated. METHOD: In this paper, we demonstrate the use of DNN-based classification tools to benefit cancer registries by automating information extraction of disease at diagnosis and at surgery from electronic text pathology reports from the US National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) population-based cancer registries. In particular, we introduce multiple methods for selective classification to achieve a target level of accuracy on multiple classification tasks while minimizing the rejection amount-that is, the number of electronic pathology reports for which the model's predictions are unreliable. We evaluate the proposed methods by comparing our approach with the current in-house deep learning-based abstaining classifier. RESULTS: Overall, all the proposed selective classification methods effectively allow for achieving the targeted level of accuracy or higher in a trade-off analysis aimed to minimize the rejection rate. On in-distribution validation and holdout test data, with all the proposed methods, we achieve on all tasks the required target level of accuracy with a lower rejection rate than the deep abstaining classifier (DAC). Interpreting the results for the out-of-distribution test data is more complex; nevertheless, in this case as well, the rejection rate from the best among the proposed methods achieving 97% accuracy or higher is lower than the rejection rate based on the DAC. CONCLUSIONS: We show that although both approaches can flag those samples that should be manually reviewed and labeled by human annotators, the newly proposed methods retain a larger fraction and do so without retraining-thus offering a reduced computational cost compared with the in-house deep learning-based abstaining classifier.


Assuntos
Aprendizado Profundo , Humanos , Incerteza , Redes Neurais de Computação , Algoritmos , Aprendizado de Máquina
4.
JAMIA Open ; 5(3): ooac075, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36110150

RESUMO

Objective: We aim to reduce overfitting and model overconfidence by distilling the knowledge of an ensemble of deep learning models into a single model for the classification of cancer pathology reports. Materials and Methods: We consider the text classification problem that involves 5 individual tasks. The baseline model consists of a multitask convolutional neural network (MtCNN), and the implemented ensemble (teacher) consists of 1000 MtCNNs. We performed knowledge transfer by training a single model (student) with soft labels derived through the aggregation of ensemble predictions. We evaluate performance based on accuracy and abstention rates by using softmax thresholding. Results: The student model outperforms the baseline MtCNN in terms of abstention rates and accuracy, thereby allowing the model to be used with a larger volume of documents when deployed. The highest boost was observed for subsite and histology, for which the student model classified an additional 1.81% reports for subsite and 3.33% reports for histology. Discussion: Ensemble predictions provide a useful strategy for quantifying the uncertainty inherent in labeled data and thereby enable the construction of soft labels with estimated probabilities for multiple classes for a given document. Training models with the derived soft labels reduce model confidence in difficult-to-classify documents, thereby leading to a reduction in the number of highly confident wrong predictions. Conclusions: Ensemble model distillation is a simple tool to reduce model overconfidence in problems with extreme class imbalance and noisy datasets. These methods can facilitate the deployment of deep learning models in high-risk domains with low computational resources where minimizing inference time is required.

5.
Diagnostics (Basel) ; 12(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36010174

RESUMO

Artificial intelligence (AI) techniques can be a solution for delayed or misdiagnosed pneumothorax. This study developed, a deep-learning-based AI model to estimate the pneumothorax amount on a chest radiograph and applied it to a treatment algorithm developed by experienced thoracic surgeons. U-net performed semantic segmentation and classification of pneumothorax and non-pneumothorax areas. The pneumothorax amount was measured using chest computed tomography (volume ratio, gold standard) and chest radiographs (area ratio, true label) and calculated using the AI model (area ratio, predicted label). Each value was compared and analyzed based on clinical outcomes. The study included 96 patients, of which 67 comprised the training set and the others the test set. The AI model showed an accuracy of 97.8%, sensitivity of 69.2%, a negative predictive value of 99.1%, and a dice similarity coefficient of 61.8%. In the test set, the average amount of pneumothorax was 15%, 16%, and 13% in the gold standard, predicted, and true labels, respectively. The predicted label was not significantly different from the gold standard (p = 0.11) but inferior to the true label (difference in MAE: 3.03%). The amount of pneumothorax in thoracostomy patients was 21.6% in predicted cases and 18.5% in true cases.

6.
JAMIA Open ; 5(2): ooac049, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35721398

RESUMO

Objectives: The International Classification of Childhood Cancer (ICCC) facilitates the effective classification of a heterogeneous group of cancers in the important pediatric population. However, there has been no development of machine learning models for the ICCC classification. We developed deep learning-based information extraction models from cancer pathology reports based on the ICD-O-3 coding standard. In this article, we describe extending the models to perform ICCC classification. Materials and Methods: We developed 2 models, ICD-O-3 classification and ICCC recoding (Model 1) and direct ICCC classification (Model 2), and 4 scenarios subject to the training sample size. We evaluated these models with a corpus consisting of 29 206 reports with age at diagnosis between 0 and 19 from 6 state cancer registries. Results: Our findings suggest that the direct ICCC classification (Model 2) is substantially better than reusing the ICD-O-3 classification model (Model 1). Applying the uncertainty quantification mechanism to assess the confidence of the algorithm in assigning a code demonstrated that the model achieved a micro-F1 score of 0.987 while abstaining (not sufficiently confident to assign a code) on only 14.8% of ambiguous pathology reports. Conclusions: Our experimental results suggest that the machine learning-based automatic information extraction from childhood cancer pathology reports in the ICCC is a reliable means of supplementing human annotators at state cancer registries by reading and abstracting the majority of the childhood cancer pathology reports accurately and reliably.

7.
Cancer Biomark ; 33(2): 185-198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213361

RESUMO

BACKGROUND: With the use of artificial intelligence and machine learning techniques for biomedical informatics, security and privacy concerns over the data and subject identities have also become an important issue and essential research topic. Without intentional safeguards, machine learning models may find patterns and features to improve task performance that are associated with private personal information. OBJECTIVE: The privacy vulnerability of deep learning models for information extraction from medical textural contents needs to be quantified since the models are exposed to private health information and personally identifiable information. The objective of the study is to quantify the privacy vulnerability of the deep learning models for natural language processing and explore a proper way of securing patients' information to mitigate confidentiality breaches. METHODS: The target model is the multitask convolutional neural network for information extraction from cancer pathology reports, where the data for training the model are from multiple state population-based cancer registries. This study proposes the following schemes to collect vocabularies from the cancer pathology reports; (a) words appearing in multiple registries, and (b) words that have higher mutual information. We performed membership inference attacks on the models in high-performance computing environments. RESULTS: The comparison outcomes suggest that the proposed vocabulary selection methods resulted in lower privacy vulnerability while maintaining the same level of clinical task performance.


Assuntos
Confidencialidade , Aprendizado Profundo , Armazenamento e Recuperação da Informação/métodos , Processamento de Linguagem Natural , Neoplasias/epidemiologia , Inteligência Artificial , Aprendizado Profundo/normas , Humanos , Neoplasias/patologia , Sistema de Registros
8.
IEEE J Biomed Health Inform ; 26(6): 2796-2803, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35020599

RESUMO

Recent applications ofdeep learning have shown promising results for classifying unstructured text in the healthcare domain. However, the reliability of models in production settings has been hindered by imbalanced data sets in which a small subset of the classes dominate. In the absence of adequate training data, rare classes necessitate additional model constraints for robust performance. Here, we present a strategy for incorporating short sequences of text (i.e. keywords) into training to boost model accuracy on rare classes. In our approach, we assemble a set of keywords, including short phrases, associated with each class. The keywords are then used as additional data during each batch of model training, resulting in a training loss that has contributions from both raw data and keywords. We evaluate our approach on classification of cancer pathology reports, which shows a substantial increase in model performance for rare classes. Furthermore, we analyze the impact of keywords on model output probabilities for bigrams, providing a straightforward method to identify model difficulties for limited training data.


Assuntos
Reprodutibilidade dos Testes , Coleta de Dados , Humanos
9.
J Biomed Inform ; 125: 103957, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823030

RESUMO

In the last decade, the widespread adoption of electronic health record documentation has created huge opportunities for information mining. Natural language processing (NLP) techniques using machine and deep learning are becoming increasingly widespread for information extraction tasks from unstructured clinical notes. Disparities in performance when deploying machine learning models in the real world have recently received considerable attention. In the clinical NLP domain, the robustness of convolutional neural networks (CNNs) for classifying cancer pathology reports under natural distribution shifts remains understudied. In this research, we aim to quantify and improve the performance of the CNN for text classification on out-of-distribution (OOD) datasets resulting from the natural evolution of clinical text in pathology reports. We identified class imbalance due to different prevalence of cancer types as one of the sources of performance drop and analyzed the impact of previous methods for addressing class imbalance when deploying models in real-world domains. Our results show that our novel class-specialized ensemble technique outperforms other methods for the classification of rare cancer types in terms of macro F1 scores. We also found that traditional ensemble methods perform better in top classes, leading to higher micro F1 scores. Based on our findings, we formulate a series of recommendations for other ML practitioners on how to build robust models with extremely imbalanced datasets in biomedical NLP applications.


Assuntos
Processamento de Linguagem Natural , Neoplasias , Registros Eletrônicos de Saúde , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
10.
BMC Bioinformatics ; 22(1): 113, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750288

RESUMO

BACKGROUND: Automated text classification has many important applications in the clinical setting; however, obtaining labelled data for training machine learning and deep learning models is often difficult and expensive. Active learning techniques may mitigate this challenge by reducing the amount of labelled data required to effectively train a model. In this study, we analyze the effectiveness of 11 active learning algorithms on classifying subsite and histology from cancer pathology reports using a Convolutional Neural Network as the text classification model. RESULTS: We compare the performance of each active learning strategy using two differently sized datasets and two different classification tasks. Our results show that on all tasks and dataset sizes, all active learning strategies except diversity-sampling strategies outperformed random sampling, i.e., no active learning. On our large dataset (15K initial labelled samples, adding 15K additional labelled samples each iteration of active learning), there was no clear winner between the different active learning strategies. On our small dataset (1K initial labelled samples, adding 1K additional labelled samples each iteration of active learning), marginal and ratio uncertainty sampling performed better than all other active learning techniques. We found that compared to random sampling, active learning strongly helps performance on rare classes by focusing on underrepresented classes. CONCLUSIONS: Active learning can save annotation cost by helping human annotators efficiently and intelligently select which samples to label. Our results show that a dataset constructed using effective active learning techniques requires less than half the amount of labelled data to achieve the same performance as a dataset constructed using random sampling.


Assuntos
Aprendizado de Máquina , Neoplasias , Algoritmos , Humanos , Neoplasias/genética , Neoplasias/patologia , Redes Neurais de Computação
11.
IEEE Trans Emerg Top Comput ; 9(3): 1219-1230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36117774

RESUMO

Population cancer registries can benefit from Deep Learning (DL) to automatically extract cancer characteristics from the high volume of unstructured pathology text reports they process annually. The success of DL to tackle this and other real-world problems is proportional to the availability of large labeled datasets for model training. Although collaboration among cancer registries is essential to fully exploit the promise of DL, privacy and confidentiality concerns are main obstacles for data sharing across cancer registries. Moreover, DL for natural language processing (NLP) requires sharing a vocabulary dictionary for the embedding layer which may contain patient identifiers. Thus, even distributing the trained models across cancer registries causes a privacy violation issue. In this paper, we propose DL NLP model distribution via privacy-preserving transfer learning approaches without sharing sensitive data. These approaches are used to distribute a multitask convolutional neural network (MT-CNN) NLP model among cancer registries. The model is trained to extract six key cancer characteristics - tumor site, subsite, laterality, behavior, histology, and grade - from cancer pathology reports. Using 410,064 pathology documents from two cancer registries, we compare our proposed approach to conventional transfer learning without privacy-preserving, single-registry models, and a model trained on centrally hosted data. The results show that transfer learning approaches including data sharing and model distribution outperform significantly the single-registry model. In addition, the best performing privacy-preserving model distribution approach achieves statistically indistinguishable average micro- and macro-F1 scores across all extraction tasks (0.823,0.580) as compared to the centralized model (0.827,0.585).

12.
J Biomed Inform ; 110: 103564, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32919043

RESUMO

OBJECTIVE: In machine learning, it is evident that the classification of the task performance increases if bootstrap aggregation (bagging) is applied. However, the bagging of deep neural networks takes tremendous amounts of computational resources and training time. The research question that we aimed to answer in this research is whether we could achieve higher task performance scores and accelerate the training by dividing a problem into sub-problems. MATERIALS AND METHODS: The data used in this study consist of free text from electronic cancer pathology reports. We applied bagging and partitioned data training using Multi-Task Convolutional Neural Network (MT-CNN) and Multi-Task Hierarchical Convolutional Attention Network (MT-HCAN) classifiers. We split a big problem into 20 sub-problems, resampled the training cases 2,000 times, and trained the deep learning model for each bootstrap sample and each sub-problem-thus, generating up to 40,000 models. We performed the training of many models concurrently in a high-performance computing environment at Oak Ridge National Laboratory (ORNL). RESULTS: We demonstrated that aggregation of the models improves task performance compared with the single-model approach, which is consistent with other research studies; and we demonstrated that the two proposed partitioned bagging methods achieved higher classification accuracy scores on four tasks. Notably, the improvements were significant for the extraction of cancer histology data, which had more than 500 class labels in the task; these results show that data partition may alleviate the complexity of the task. On the contrary, the methods did not achieve superior scores for the tasks of site and subsite classification. Intrinsically, since data partitioning was based on the primary cancer site, the accuracy depended on the determination of the partitions, which needs further investigation and improvement. CONCLUSION: Results in this research demonstrate that 1. The data partitioning and bagging strategy achieved higher performance scores. 2. We achieved faster training leveraged by the high-performance Summit supercomputer at ORNL.


Assuntos
Neoplasias , Redes Neurais de Computação , Metodologias Computacionais , Humanos , Armazenamento e Recuperação da Informação , Aprendizado de Máquina
13.
Cancers (Basel) ; 12(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668721

RESUMO

Colorectal cancer (CRC) is one of the most common cancers requiring early pathologic diagnosis using colonoscopy biopsy samples. Recently, artificial intelligence (AI) has made significant progress and shown promising results in the field of medicine despite several limitations. We performed a systematic review of AI use in CRC pathology image analysis to visualize the state-of-the-art. Studies published between January 2000 and January 2020 were searched in major online databases including MEDLINE (PubMed, Cochrane Library, and EMBASE). Query terms included "colorectal neoplasm," "histology," and "artificial intelligence." Of 9000 identified studies, only 30 studies consisting of 40 models were selected for review. The algorithm features of the models were gland segmentation (n = 25, 62%), tumor classification (n = 8, 20%), tumor microenvironment characterization (n = 4, 10%), and prognosis prediction (n = 3, 8%). Only 20 gland segmentation models met the criteria for quantitative analysis, and the model proposed by Ding et al. (2019) performed the best. Studies with other features were in the elementary stage, although most showed impressive results. Overall, the state-of-the-art is promising for CRC pathological analysis. However, datasets in most studies had relatively limited scale and quality for clinical application of this technique. Future studies with larger datasets and high-quality annotations are required for routine practice-level validation.

14.
Artif Intell Med ; 101: 101726, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31813492

RESUMO

We introduce a deep learning architecture, hierarchical self-attention networks (HiSANs), designed for classifying pathology reports and show how its unique architecture leads to a new state-of-the-art in accuracy, faster training, and clear interpretability. We evaluate performance on a corpus of 374,899 pathology reports obtained from the National Cancer Institute's (NCI) Surveillance, Epidemiology, and End Results (SEER) program. Each pathology report is associated with five clinical classification tasks - site, laterality, behavior, histology, and grade. We compare the performance of the HiSAN against other machine learning and deep learning approaches commonly used on medical text data - Naive Bayes, logistic regression, convolutional neural networks, and hierarchical attention networks (the previous state-of-the-art). We show that HiSANs are superior to other machine learning and deep learning text classifiers in both accuracy and macro F-score across all five classification tasks. Compared to the previous state-of-the-art, hierarchical attention networks, HiSANs not only are an order of magnitude faster to train, but also achieve about 1% better relative accuracy and 5% better relative macro F-score.


Assuntos
Neoplasias/patologia , Aprendizado Profundo , Humanos , Processamento de Linguagem Natural , Neoplasias/classificação , Redes Neurais de Computação
15.
Artigo em Inglês | MEDLINE | ID: mdl-36081613

RESUMO

Automated text information extraction from cancer pathology reports is an active area of research to support national cancer surveillance. A well-known challenge is how to develop information extraction tools with robust performance across cancer registries. In this study we investigated whether transfer learning (TL) with a convolutional neural network (CNN) can facilitate cross-registry knowledge sharing. Specifically, we performed a series of experiments to determine whether a CNN trained with single-registry data is capable of transferring knowledge to another registry or whether developing a cross-registry knowledge database produces a more effective and generalizable model. Using data from two cancer registries and primary tumor site and topography as the information extraction task of interest, our study showed that TL results in 6.90% and 17.22% improvement of classification macro F-score over the baseline single-registry models. Detailed analysis illustrated that the observed improvement is evident in the low prevalence classes.

16.
J Digit Imaging ; 32(1): 131-140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30066123

RESUMO

Colorectal cancer (CRC) is a major global health concern. Its early diagnosis is extremely important, as it determines treatment options and strongly influences the length of survival. Histologic diagnosis can be made by pathologists based on images of tissues obtained from a colonoscopic biopsy. Convolutional neural networks (CNNs)-i.e., deep neural networks (DNNs) specifically adapted to image data-have been employed to effectively classify or locate tumors in many types of cancer. Colorectal histology images of 28 normal and 29 tumor samples were obtained from the National Cancer Center, South Korea, and cropped into 6806 normal and 3474 tumor images. We developed five modifications of the system from the Visual Geometry Group (VGG), the winning entry in the classification task in the 2014 ImageNet Large Scale Visual Recognition Competition (ILSVRC) and examined them in two experiments. In the first experiment, we determined the best modified VGG configuration for our partial dataset, resulting in accuracies of 82.50%, 87.50%, 87.50%, 91.40%, and 94.30%, respectively. In the second experiment, the best modified VGG configuration was applied to evaluate the performance of the CNN model. Subsequently, using the entire dataset on the modified VGG-E configuration, the highest results for accuracy, loss, sensitivity, and specificity, respectively, were 93.48%, 0.4385, 95.10%, and 92.76%, which equates to correctly classifying 294 normal images out of 309 and 667 tumor images out of 719.


Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Humanos , República da Coreia , Sensibilidade e Especificidade
17.
BMC Bioinformatics ; 19(Suppl 18): 488, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577743

RESUMO

BACKGROUND: Deep Learning (DL) has advanced the state-of-the-art capabilities in bioinformatics applications which has resulted in trends of increasingly sophisticated and computationally demanding models trained by larger and larger data sets. This vastly increased computational demand challenges the feasibility of conducting cutting-edge research. One solution is to distribute the vast computational workload across multiple computing cluster nodes with data parallelism algorithms. In this study, we used a High-Performance Computing environment and implemented the Downpour Stochastic Gradient Descent algorithm for data parallelism to train a Convolutional Neural Network (CNN) for the natural language processing task of information extraction from a massive dataset of cancer pathology reports. We evaluated the scalability improvements using data parallelism training and the Titan supercomputer at Oak Ridge Leadership Computing Facility. To evaluate scalability, we used different numbers of worker nodes and performed a set of experiments comparing the effects of different training batch sizes and optimizer functions. RESULTS: We found that Adadelta would consistently converge at a lower validation loss, though requiring over twice as many training epochs as the fastest converging optimizer, RMSProp. The Adam optimizer consistently achieved a close 2nd place minimum validation loss significantly faster; using a batch size of 16 and 32 allowed the network to converge in only 4.5 training epochs. CONCLUSIONS: We demonstrated that the networked training process is scalable across multiple compute nodes communicating with message passing interface while achieving higher classification accuracy compared to a traditional machine learning algorithm.


Assuntos
Metodologias Computacionais , Aprendizado Profundo/tendências , Neoplasias/diagnóstico , Compreensão , Humanos , Neoplasias/patologia , Redes Neurais de Computação
18.
J Med Imaging (Bellingham) ; 5(3): 031408, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29564370

RESUMO

Prior research has shown that physicians' medical decisions can be influenced by sequential context, particularly in cases where successive stimuli exhibit similar characteristics when analyzing medical images. This type of systematic error is known to psychophysicists as sequential context effect as it indicates that judgments are influenced by features of and decisions about the preceding case in the sequence of examined cases, rather than being based solely on the peculiarities unique to the present case. We determine if radiologists experience some form of context bias, using screening mammography as the use case. To this end, we explore correlations between previous perceptual behavior and diagnostic decisions and current decisions. We hypothesize that a radiologist's visual search pattern and diagnostic decisions in previous cases are predictive of the radiologist's current diagnostic decisions. To test our hypothesis, we tasked 10 radiologists of varied experience to conduct blind reviews of 100 four-view screening mammograms. Eye-tracking data and diagnostic decisions were collected from each radiologist under conditions mimicking clinical practice. Perceptual behavior was quantified using the fractal dimension of gaze scanpath, which was computed using the Minkowski-Bouligand box-counting method. To test the effect of previous behavior and decisions, we conducted a multifactor fixed-effects ANOVA. Further, to examine the predictive value of previous perceptual behavior and decisions, we trained and evaluated a predictive model for radiologists' current diagnostic decisions. ANOVA tests showed that previous visual behavior, characterized by fractal analysis, previous diagnostic decisions, and image characteristics of previous cases are significant predictors of current diagnostic decisions. Additionally, predictive modeling of diagnostic decisions showed an overall improvement in prediction error when the model is trained on additional information about previous perceptual behavior and diagnostic decisions.

19.
IEEE J Biomed Health Inform ; 22(1): 244-251, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475069

RESUMO

Pathology reports are a primary source of information for cancer registries which process high volumes of free-text reports annually. Information extraction and coding is a manual, labor-intensive process. In this study, we investigated deep learning and a convolutional neural network (CNN), for extracting ICD-O-3 topographic codes from a corpus of breast and lung cancer pathology reports. We performed two experiments, using a CNN and a more conventional term frequency vector approach, to assess the effects of class prevalence and inter-class transfer learning. The experiments were based on a set of 942 pathology reports with human expert annotations as the gold standard. CNN performance was compared against a more conventional term frequency vector space approach. We observed that the deep learning models consistently outperformed the conventional approaches in the class prevalence experiment, resulting in micro- and macro-F score increases of up to 0.132 and 0.226, respectively, when class labels were well populated. Specifically, the best performing CNN achieved a micro-F score of 0.722 over 12 ICD-O-3 topography codes. Transfer learning provided a consistent but modest performance boost for the deep learning methods but trends were contingent on the CNN method and cancer site. These encouraging results demonstrate the potential of deep learning for automated abstraction of pathology reports.


Assuntos
Inteligência Artificial , Diagnóstico por Computador/métodos , Registros Eletrônicos de Saúde , Neoplasias , Humanos , Neoplasias/classificação , Neoplasias/diagnóstico , Neoplasias/patologia , Máquina de Vetores de Suporte
20.
J Am Med Inform Assoc ; 25(3): 321-330, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155996

RESUMO

OBJECTIVE: We explored how a deep learning (DL) approach based on hierarchical attention networks (HANs) can improve model performance for multiple information extraction tasks from unstructured cancer pathology reports compared to conventional methods that do not sufficiently capture syntactic and semantic contexts from free-text documents. MATERIALS AND METHODS: Data for our analyses were obtained from 942 deidentified pathology reports collected by the National Cancer Institute Surveillance, Epidemiology, and End Results program. The HAN was implemented for 2 information extraction tasks: (1) primary site, matched to 12 International Classification of Diseases for Oncology topography codes (7 breast, 5 lung primary sites), and (2) histological grade classification, matched to G1-G4. Model performance metrics were compared to conventional machine learning (ML) approaches including naive Bayes, logistic regression, support vector machine, random forest, and extreme gradient boosting, and other DL models, including a recurrent neural network (RNN), a recurrent neural network with attention (RNN w/A), and a convolutional neural network. RESULTS: Our results demonstrate that for both information tasks, HAN performed significantly better compared to the conventional ML and DL techniques. In particular, across the 2 tasks, the mean micro and macro F-scores for the HAN with pretraining were (0.852,0.708), compared to naive Bayes (0.518, 0.213), logistic regression (0.682, 0.453), support vector machine (0.634, 0.434), random forest (0.698, 0.508), extreme gradient boosting (0.696, 0.522), RNN (0.505, 0.301), RNN w/A (0.637, 0.471), and convolutional neural network (0.714, 0.460). CONCLUSIONS: HAN-based DL models show promise in information abstraction tasks within unstructured clinical pathology reports.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...