Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent Sci ; 17(4): 1722-1730, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36299346

RESUMO

Background/purpose: Photodynamic therapy (PDT) is a therapeutic alternative for malignant tumors that uses a photosensitizer. This study examined whether synthesized Pheophorbide a (Pa) -PDT induced apoptosis and autophagy involving endoplasmic reticulum (ER) stress in oral squamous cell carcinoma (OSCC) cells. Materials and methods: Human OSCC cells were treated with Pa-PDT, and cell proliferation was examined by MTT assay. Apoptosis and autophagy were measured using Western blot analysis. ER stress was examined using RT-PCR and Western blot analysis. In vivo murine OSCC animal model were treated with intratumoral (IT) Pa-PDT, and investigated the therapeutic effect. Results: Pa-PDT significantly inhibited the proliferation of human OSCC cells in a dose-dependent manner. Pa-PDT induced intrinsic apoptotic cell death and also induced autophagy. Pa-PDT induced ER stress which was observed as demonstrated by the up-regulation of the ER stress marker. Inhibition of the ER stress pathway using 4-phenylbutyric acid (PBA) decreased CHOP and induced inhibition of cell deaths. In addition, the inhibition of ER stress enhanced Pa-PDT mediated autophagy. IT Pa-PDT significantly inhibited the tumor growth and induced apoptosis, autophagy and ER stress in vivo OSCC cells transplanted model. Conclusion: This study showed that synthesized Pa-PDT induced ER stress trigger apoptosis and apoptotic cell death pathways in OSCC cells. The inhibition of ER stress declined Pa-PDT mediated cytotoxicity with an increase of autophagy. These results may provide Pa-PDT exerts anti-tumor effects through ER stress pathway in OSCC cells and may provide a basis for developing Pa-PDT targeting ER stress as a therapy for OSCC.

2.
J Dent Sci ; 15(1): 1-8, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32256993

RESUMO

BACKGROUND/PURPOSE: Oral lichen planus (OLP) is a chronic inflammatory disease of oral mucosa. The present study investigated the expression of nucleotide-binding oligomerization domain (NOD), a pivotal sensor protein of the innate immune system, in OLP. MATERIALS AND METHODS: Oral mucosal biopsies were collected from 20 patients with OLP and 6 individuals with normal oral mucosa (NOM). The expression of NOD1 and NOD2 was determined using RT-PCR and immunohistochemistry in OLP and NOM samples. RESULTS: The mRNA expression of NOD1 and NOD2 was significantly higher in the OLP group than in the NOM group. The protein expression of NOD1 was marginally upregulated in all mucosal layers in the OLP group compared with that of the NOM group; however, the differences were not significant. The expression of NOD2 was elevated in infiltrating lymphocytes of the submucosal layer in the OLP group compared with the NOM group, but was undetected in other inflammatory disease, inflammatory fibrous hyperplasia (IFH). This study revealed the upregulation of NOD2 mRNA and protein in the OLP group, but not in the NOM group. CONCLUSION: These findings suggest that NOD2 may play an important role in the pathogenesis of OLP and represents a new diagnostic and treatment target.

3.
Oncol Res ; 25(2): 295-304, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-27629775

RESUMO

Photodynamic therapy (PDT) is a therapeutic alternative for malignant tumors that uses a photosensitizer. Our group recently synthesized photosensitizer pheophorbide a (Pa) from chlorophyll-a. The present study investigated the therapeutic effect of PDT using intratumoral administration of the synthetic photosensitizer Pa in an in vivo murine oral squamous cell carcinoma (OSCC) animal model. Pa accumulation was measured using the fluorescence spectrum and imaging in living C3H mice. Intratumoral treatment of Pa-PDT (IT Pa-PDT) significantly inhibited the growth of transplanted OSCC cells. Histopathological examination of tumor tissues showed that PCNA expression was significantly decreased, while TUNEL-stained cells were markedly increased in the IT Pa-PDT group compared to controls. IT Pa-PDT-induced apoptosis was confirmed by immunoblot. Reduction of Bcl-2 and cleavage of caspase 3 and PARP were observed in IT Pa-PDT. These data demonstrate that IT Pa-PDT inhibited tumor cell proliferation and induced apoptosis, which is correlated with the anticancer activity of IT Pa-PDT. These potent antitumor activities of IT Pa-PDT were observed in both the immunohistochemistry and Western blot experiments. Our findings suggest the intratumoral therapeutic potential of Pa-PDT on OSCC. Additionally, demonstrated detection of Pa using a fluorescence spectroscopy system or molecular imaging system provides a means for simultaneous diagnosis and treatment of OSCC.


Assuntos
Clorofila/análogos & derivados , Neoplasias Bucais/tratamento farmacológico , Fotoquimioterapia/métodos , Radiossensibilizantes/síntese química , Radiossensibilizantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Clorofila/síntese química , Clorofila/uso terapêutico , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C3H , Neoplasias Bucais/patologia
4.
J Oral Pathol Med ; 45(4): 262-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26332444

RESUMO

OBJECTIVES: Microbial Pattern-recognition receptors (PRRs), such as nucleotide-binding oligomerization domains (NODs), are essential for mammalian innate immune response. This study was designed to determine the effect of NOD1 and NOD2 agonist on innate immune responses and antitumor activity in oral squamous cell carcinoma (OSCC) cells. MATERIALS AND METHODS: NODs expression was examined by RT-PCR, and IL-8 production by NODs agonist was examined by ELISA. Western blot analysis was performed to determine the MAPK activation in response to their agonist. Cell proliferation was determined by MTT assay. Flow cytometry and Western blot analysis were performed to determine the MDP-induced cell death. RESULTS: The levels of NODs were apparently expressed in OSCC cells. NODs agonist, Tri-DAP and MDP, led to the production of IL-8 and MAPK activation. NOD2 agonist, MDP, inhibited the proliferation of YD-10B cells in a dose-dependent manner. Also, the ratio of Annexin V-positive cells and cleaved PARP was increased by MDP treatment in YD-10B cells, suggesting that MDP-induced cell death in YD-10B cells may be owing to apoptosis. CONCLUSIONS: Our results indicate that NODs are functionally expressed in OSCC cells and can trigger innate immune responses. In addition, NOD2 agonist inhibited cell proliferation and induced apoptosis. These findings provide the potential value of MDP as novel candidates for antitumor agents of OSCC.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Ácido Diaminopimélico/análogos & derivados , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Proteína Adaptadora de Sinalização NOD2/agonistas , Oligopeptídeos/farmacologia , Antineoplásicos/farmacologia , Apoptose/fisiologia , Western Blotting , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ácido Diaminopimélico/farmacologia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imunidade Inata/efeitos dos fármacos , Interleucina-8/biossíntese , Interleucina-8/metabolismo , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias Bucais/imunologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD1/biossíntese , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Adaptadora de Sinalização NOD2/genética , RNA Mensageiro/biossíntese , Carcinoma de Células Escamosas de Cabeça e Pescoço
5.
Eur J Pharm Sci ; 79: 122-31, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26342773

RESUMO

This study examined the anti-tumor effects of AGM130, a novel indirubin-3'-oxime derivative in A549 human non-small cell lung cancer cells. AGM130 significantly inhibited the proliferation and arrested the cell cycle of G2/M phase. Induction of apoptosis was detected in AGM130-treated A549 cells. The protein levels of Cytochrome c release, Bax, cleaved caspases and PARP were increased in AGM130 treated cells, whereas Bcl-2 levels were decreased. AGM130 inhibited Insulin-like growth factor 1 receptor (IGF1R), AKT/mTOR signaling and inactivated mitogen-activated protein kinases (MAPK). AGM130 also induced slight autophagy as pro-survival function and autophagy inhibition by chloroquine (CQ) induced necrosis. In vivo tumor xenograft model, AGM130 dose-dependently suppressed transplanted A549 cell tumor growth and induced the expression of proliferative cell nuclear antigen (PCNA). AGM130 also increased TUNEL positive apoptotic cell populations and the induction of glandular differentiation with mucin pool compared with vehicle-treated control in tumor tissue. These results suggest that AGM130 is an effective novel indirubin-3'-oxime derivative of anti-cancer drug and may be an attractive candidate for non-small cell lung cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Indóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Oximas/uso terapêutico , Animais , Apoptose , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Proteína Oncogênica v-akt/antagonistas & inibidores , Oximas/farmacologia , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inibidores
6.
Int J Pharm ; 491(1-2): 393-401, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26149935

RESUMO

Photodynamic therapy (PDT) is a promising noninvasive treatment modality for cancer. Photosensitizer and specific wave length of light are the key component of PDT. DH-I-180-3, a second generation photosensitizer, was incorporated into lipid nanoparticle for simultaneous fluorescent imaging and targeting therapy. Solid lipid nanoparticle (SLN) and nanostructured lipid carriers (NLC) based on poloxamer 188 as surfactant and lecithin as co-surfactant were prepared using solvent evaporation and hot homogenization technique. Stearic acid and Capmul(®) MCM C8 were utilized as solid lipid and liquid lipid, respectively. The particle size of SLN and NLCs was around 200 nm and decreased when a part of stearic acid was replaced with Capmul(®) MCM C8. Drug loading efficacy was significantly enhanced when the percentage amount of liquid lipid increased. All the polydispersity indices of the SLN/NLCs were below 0.3, and displayed a narrow particle size distribution. Zeta potentials of all the lipid nanoparticles were below -30 mV, maintaining sufficient repulsive force and achieving enhanced physical stability. No significant change in the particle size and polydispersity index was observed from lyophilized SLN/NLCs. When the photocytotoxic effects of the formulations were evaluated in MCF-7 cells, GI 50 of SLN was less than half of DH-I-180-3 solution, and NLCs containing either 5 or 15%w/w of Capmul(®) MCM C8 exerted higher cytotoxicity than SLN. The fluorescence microscope images displayed enhanced cellular accumulation of DH-I-180-3 loaded in SLN and NLCs, which was closely correlated with the photocytotoxicity results. It was concluded that the incorporation of DH-I-180-3 into the nanoparticles enhanced their targeting efficacy and improved photocytotoxicity.


Assuntos
Clorofila/análogos & derivados , Lipídeos/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Caprilatos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica , Clorofila/administração & dosagem , Portadores de Fármacos , Glicerídeos , Humanos , Lecitinas , Células MCF-7 , Nanopartículas/administração & dosagem , Poloxâmero , Ácidos Esteáricos , Tensoativos
7.
Bioorg Med Chem ; 23(7): 1453-62, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25753328

RESUMO

Pheophorbide-a, a non-selective photosensitizer, was conjugated with cancer-targeting moieties, such as folic acid, the CRGDLASLC peptide, the cRGDfK peptide and leuprorelin, for the purpose of targeted photodynamic cancer therapy. The cellular uptake of pheophorbide-a conjugates in cancer cells overexpressing the corresponding receptors of the targeting moieties was largely enhanced compared with that in the receptor-negative cells. In the study of in vitro photodynamic activity and selectivity of pheophorbide-a conjugates in the receptor-positive and receptor-negative cells, a pheophorbide-a conjugate, (14) with an αvß6 ligand (CRGDLASLC) exhibited the highest selectivity in the positive FaDu cells. Targeted PDT with 14 induced cell death through apoptosis and morphological apoptosis-like characteristics. These results suggest that pheophorbide-a conjugate 14 could be utilized in selective photodynamic therapy for oral cancers primarily expressing the αvß6 receptor.


Assuntos
Clorofila/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofila/administração & dosagem , Clorofila/química , Relação Dose-Resposta a Droga , Humanos , Fármacos Fotossensibilizantes/administração & dosagem
9.
Arch Toxicol ; 89(8): 1271-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25273023

RESUMO

Cadmium (Cd) resistance is associated with the suppression of autophagy in H460 lung cancer cells, which is regulated by phospho(p)serine-glycogen synthase kinase (GSK) 3αß. However, the involvement of multidrug resistance (MDR) in this signaling pathway and its underlying mechanisms remain to be elucidated. In this study, we used Cd-resistant cells (RH460), developed from H460 lung cancer cells, to demonstrate that the induction of MDR-associated protein (MRP1) in response to Cd is enhanced in H460 cells compared to RH460. Treating RH460 cells with Cd induced large cytoplasmic vacuoles, which was inhibited by the autophagy inhibitor 3-methyladenine. MRP1 was detected in the nuclear-rich membrane fractions and redistributed from the perinuclear to the cytoplasmic compartment following exposure to Cd. Cd-induced MRP1, p-Ser/p-Tyr GSK3αß, and LC3-II were all suppressed by the GSK3 inhibitor SB216763, but increased by lithium. Furthermore, MRP1 was upregulated by the Ser/Thr phosphatase inhibitor okadaic acid and downregulated by the tyrosine phosphatase inhibitor vanadate, suggesting that MRP1 protein was stabilized by p-Ser GSK3αß. In addition, co-immunoprecipitation and co-localization analyzes revealed a physical interaction between MRP1 and p-Ser GSK3αß. Genetic knockdown of GSK3ß decreased Cd-induced MRP1 mRNA and protein levels, whereas its overexpression upregulated MRP1 protein expression. MRP1 also co-localized with lysosomal membrane protein-2, which may cause lysosomal membrane permeabilization and the subsequent release of cathepsins into the cytosol. In mice chronically injected with Cd, MRP1 localized to the perinuclear region of bronchial and alveolar epithelial cells. Collectively, these data suggest that Cd toxicity is regulated by the transcriptional regulation, stabilization, and subcellular redistribution of MRP1 via the posttranslational modification of GSK3αß. Therefore, the serine phosphorylation of GSK3αß plays a critical role in MRP1-induced cell death.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Resistência a Medicamentos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Humanos , Imunoprecipitação , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Transporte Proteico , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Transfecção
10.
Microbiology (Reading) ; 160(Pt 7): 1533-1544, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24742960

RESUMO

Actinobacillus succinogenes, which is known to produce large amounts of succinate during fermentation of hexoses, was able to grow on C4-dicarboxylates such as fumarate under aerobic and anaerobic conditions. Anaerobic growth on fumarate was stimulated by glycerol and the major product was succinate, indicating the involvement of fumarate respiration similar to succinate production from glucose. The aerobic growth on C4-dicarboxylates and the transport proteins involved were studied. Fumarate was oxidized to acetate. The genome of A. succinogenes encodes six proteins with similarity to secondary C4-dicarboxylate transporters, including transporters of the Dcu (C4-dicarboxylate uptake), DcuC (C4-dicarboxylate uptake C), DASS (divalent anion : sodium symporter) and TDT (tellurite resistance dicarboxylate transporter) family. From the cloned genes, Asuc_0304 of the DASS family protein was able to restore aerobic growth on C4-dicarboxylates in a C4-dicarboxylate-transport-negative Escherichia coli strain. The strain regained succinate or fumarate uptake, which was dependent on the electrochemical proton potential and the presence of Na(+). The transport had an optimum pH ~7, indicating transport of the dianionic C4-dicarboxylates. Transport competition experiments suggested substrate specificity for fumarate and succinate. The transport characteristics for C4-dicarboxylate uptake by cells of aerobically grown A. succinogenes were similar to those of Asuc_0304 expressed in E. coli, suggesting that Asuc_0304 has an important role in aerobic fumarate uptake in A. succinogenes. Asuc_0304 has sequence similarity to bacterial Na(+)-dicarboxylate cotransporters and contains the carboxylate-binding signature. Asuc_0304 was named SdcA (sodium-coupled C4-dicarboxylate transporter from A. succinogenes).


Assuntos
Actinobacillus/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Regulação Bacteriana da Expressão Gênica , Actinobacillus/genética , Actinobacillus/crescimento & desenvolvimento , Aerobiose , Sequência de Aminoácidos , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Radioisótopos de Carbono/análise , Transportadores de Ácidos Dicarboxílicos/genética , Ácidos Dicarboxílicos/metabolismo , Fumaratos/metabolismo , Glucose/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Sódio/metabolismo , Succinatos/metabolismo
11.
Oncol Rep ; 31(1): 137-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24253565

RESUMO

Pheophorbide a (Pa), a chlorophyll derivative, is a photosensitizer that can induce significant antitumor effects in several types of tumor cells. The present study investigated the mechanism of Pa-mediated photodynamic therapy (Pa-PDT) in the human skin cancer cell lines A431 and G361. PDT significantly inhibited the cell growth in a Pa-concentration-dependent manner. We observed increased expression of Beclin-1, LC3B and ATG5, which are markers of autophagy, after PDT treatment in A431 cells but not in G361 cells. In G361 cells, Pa-PDT strongly induced PARP cleavage and subsequent apoptosis, which was confirmed using Annexin V/Propidium iodide double staining. Pa-PDT predominantly exhibited its antitumor effects via activation of ERK1/2 and p38 in A431 and G361 cells, respectively. An in vivo study using the CAM xenograft model demonstrated that Pa-PDT strongly induced autophagy and apoptosis in A431-transplanted tumors and/or apoptosis in G361-transplanted tumors. These results may provide a basis for understanding the underlying mechanisms of Pa-PDT and for developing Pa-PDT as a therapy for skin cancer.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Clorofila/análogos & derivados , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Apoptose/efeitos da radiação , Proteínas Reguladoras de Apoptose/biossíntese , Autofagia/efeitos da radiação , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Clorofila/uso terapêutico , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Camundongos , Proteínas Associadas aos Microtúbulos/biossíntese , Poli(ADP-Ribose) Polimerases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Microbiol Immunol ; 57(8): 547-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23668640

RESUMO

Photodynamic therapy (PDT) has been considered a feasible alternative for antimicrobial therapy of multidrug-resistant pathogens. However, bacterial response mechanisms against PDT-generated photo-oxidative stress remain largely unknown. Herein, it is shown that the accessory gene regulator Agr is involved in Staphylococcus aureus response to photo-oxidative stress generated by laser-induced PDT with the photosensitizer chlorin e6 . Transcriptional profiling revealed that sublethal PDT induces a general stress response and also activates Agr-dependent gene regulation. Moreover, mutant S. aureus lacking Agr function showed hypersusceptibility to two independent PDT conditions with higher energy densities, demonstrating Agr-dependent S. aureus resistance against PDT.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Fármacos Fotossensibilizantes/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/genética , Transativadores/genética , Regulação para Cima/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Clorofilídeos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Fotoquimioterapia , Porfirinas/uso terapêutico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Transativadores/metabolismo
13.
J Oral Pathol Med ; 42(1): 17-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22742535

RESUMO

BACKGROUND: Pheophorbide a (Pa) is a chlorine-based photosensitizer derived from an ethnopharmacological herb, and our group recently synthesized Pa by the removal of a magnesium ion and a phytyl group from chlorophyll-a. In this study, the effect of photodynamic therapy (PDT) with synthesized Pa was examined in a human oral squamous cell carcinoma (OSCC) cells. METHODS: Cells were treated with PDT with Pa, and reactive oxygen species (ROS) and mitochondrial membrane potential [ΔΨ (m)] were examined. Apoptosis was measured using annexin V staining and immunoblot. Autophagy was characterized by the increase in LC3B-II and the formation of autophagosome and acidic vesicular organelles (AVOs). RESULTS: Pa-PDT inhibited the proliferation of OSCC cells in a dose-dependent manner. Pa-PDT increased the number of apoptotic cells by inactivating ERK pathway. Pa-PDT also induced autophagy in OSCC cells evidenced by the increased levels of LC3 type II expression and the accumulation of AVOs. The inhibition of autophagy enhanced Pa-PDT-mediated cytotoxicity through an increase in necrosis. CONCLUSIONS: These results suggest that synthesized Pa-PDT exerts anti-tumor effects by inducing apoptosis and autophagy and provide novel evidence that Pa-PDT induces autophagy, and autophagy inhibition enhances Pa-PDT-mediated necrosis in OSCC cells.


Assuntos
Apoptose , Autofagia , Carcinoma de Células Escamosas/tratamento farmacológico , Clorofila/análogos & derivados , Neoplasias Bucais/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clorofila/síntese química , Clorofila/farmacologia , Clorofila/uso terapêutico , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/biossíntese , Necrose , Fagossomos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo
14.
Lasers Surg Med ; 44(1): 76-86, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22246987

RESUMO

BACKGROUND AND OBJECTIVE: 5-Aminolaevulinic acid (ALA) and its derivatives act as precursors of the photosensitizer protoporphyrin IX (PpIX). In this study, we compared cytotoxic effects of photodynamic therapy (PDT) with the hexenyl ester of ALA (ALA-hx) between MCF-7 human breast cancer cells and adriamycin-resistant MCF-7 (MCF-7/ADR) cells. MATERIALS AND METHODS: Cell viability and apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide (MTT), flow cytometry assays. Chick chorioallantoic membrane (CAM) assays were applied to assess in vivo effect of ALA-hx PDT. Molecular analyses using Western blots and minimal reporter constructs containing the antioxidant response element (ARE) region were performed to reveal mechanistic basis for the differential PDT sensitivity of MCF-7 and MCF-7/ADR cells. RESULTS: In MCF-7/ADR cells, PDT with ALA-hx more efficiently produced reactive oxygen species (ROS) and suppressed cell viability compared to MCF-7 cells. Cell death induced by ALA-hx PDT in MCF-7/ADR cells was mainly due to apoptosis. CAM assays confirmed that the apoptotic activity of PDT in MCF-7/ADR cells was significantly higher than that in control MCF-7 cells. We also found that MCF-7/ADR cells produced lower levels of glutathione (GSH), a major antioxidant, than control MCF-7 cells. Expression of Nrf2-dependent anti-oxidant genes including γ-glutamylcysteine ligase, heme oxygenase-1, and quinone oxidoreductase were down-regulated in MCF-7/ADR cells, and Nrf2 overexpression partially decreased the susceptibility of ALA-hx PDT in MCF-7/ADR cells. Moreover, PpIX synthesis and expression levels of protoporphyrinogen oxidase (PPO) and coproporphyrinogen oxidase (CPO) were much higher in MCF-7/ADR cells than MCF-7 cells. CONCLUSIONS: ALA-hx PDT more potently produced intracellular ROS in MCF-7/ADR cells, which might be due to down-regulation of Nrf2-mediated anti-oxidant gene transcription and up-regulation of PpIX synthesis via the induction of CPO and PPO. These findings suggest that ALA-hx PDT may be usable as a therapeutic alternative for adriamycin-resistant breast cancer.


Assuntos
Ácido Aminolevulínico/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Heme Oxigenase-1/efeitos dos fármacos , Fotoquimioterapia/métodos , Ácido Aminolevulínico/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Células Tumorais Cultivadas
15.
Acta Odontol Scand ; 70(3): 241-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22181939

RESUMO

OBJECTIVE: Toll-like receptors (TLR) signaling has dual effect of promoting tumor progression and anti-cancer property. This study was designed to determine the effect of polyinosinic-polycytidilic acid (poly I:C), a TLR3 agonist, on the proliferation of oral cancer cells. MATERIALS AND METHODS: Human oral squamous cell carcinoma cell lines, YD-10B and YD-8, were used. TLRs expression was examined by RT-PCR and IL-8 production by poly I:C was examined by ELISA. Cell proliferation was determined by MTT assay. Flow cytometry and Western blot analysis were performed to determine the molecular mechanism of poly I:C-induced cell death. RESULTS: TLR3 was functionally expressed in YD-10B and YD-8 cells. Treatment of poly I:C inhibited the cell growth in a dose-dependent manner. Flow cytometry and Western blot analysis revealed that poly I:C induced apoptosis via a mitochondria-dependent pathway. In addition, combination treatment with poly I:C and paclitaxel more significantly inhibited cell proliferation compared with poly I:C or paclitaxel alone. CONCLUSIONS: Poly I:C effectively inhibits oral cancer cell proliferation and can be considered as a candidate to improve the inhibitory effect of anti-cancer drugs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Poli I-C/administração & dosagem , Receptor 3 Toll-Like/agonistas , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioterapia Adjuvante/métodos , Relação Dose-Resposta a Droga , Humanos , Paclitaxel/administração & dosagem
16.
Cancer Lett ; 316(1): 97-104, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22115795

RESUMO

A novel indirubin derivative, 5'-nitro-indirubinoxime (5'-NIO), exhibits a strong anti-cancer activity against human cancer cells. Here, the 5'-NIO-mediated G1 cell cycle arrest in lung cancer cells was associated with a decrease in protein levels of polo-like kinase 1 (Plk1) and peptidyl-prolyl cis/trans isomerase Pin1. Treatment with Plk1 siRNA or Pin1 inhibitor effectively inhibited the Rb phosphorylation, suggesting their regulatory role at G1 phase. In addition, the overexpression of Plk1 or Pin1 inhibited apoptotic signals following the cleavage of PARP in 5'-NIO-treated cells. These findings suggest that 5'-NIO have potential anti-cancer efficacy through the inhibition of Plk1 or/and Pin1 expression.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Indóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Oximas/farmacologia , Peptidilprolil Isomerase/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Quinase 4 Dependente de Ciclina/genética , Fase G1/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/genética , Proteína do Retinoblastoma/metabolismo , Quinase 1 Polo-Like
17.
Bioorg Med Chem ; 19(18): 5383-91, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21873067

RESUMO

Pheophorbide-a, a chlorine based photosensitizer known to be selectively accumulated in cancer cells, was conjugated with anticancer drugs, doxorubicin and paclitaxel in the purpose of selective cancer diagnosis and therapy. Pheophorbide-a was conjugated with anticancer drugs via directly and by the use of selective cleavage linkers in cancer cell. The fluorescence of pheophorbide-a and doxorubicin conjugate by excitation at 420 or 440 nm was greatly diminished possibly by the energy transfer mechanism between two fluorescent groups. However, upon treatment in cancer cells, the conjugate showed to be cleaved to restore each fluorescence of pheophorbide-a and doxorubicin after 48 h of incubation. Also, pheophorbide-a conjugates either with doxorubicin and paclitaxel inhibited the growth of various cancer cells more potently than pheophorbide-a, which displayed very weak inhibitory activity. The results indicated that the pheophorbide-a conjugates with anticancer drugs could be utilized for selective cancer therapy as well as for the fluorescence detection of cancer.


Assuntos
Antineoplásicos/farmacologia , Clorofila/análogos & derivados , Doxorrubicina/farmacologia , Corantes Fluorescentes , Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorofila/química , Relação Dose-Resposta a Droga , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Fluorescência , Corantes Fluorescentes/química , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C3H , Microscopia Confocal , Conformação Molecular , Neoplasias/diagnóstico , Paclitaxel/química , Espectrometria de Fluorescência , Estereoisomerismo , Relação Estrutura-Atividade , Distribuição Tecidual , Células Tumorais Cultivadas
18.
J Oral Pathol Med ; 40(2): 187-93, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20819129

RESUMO

BACKGROUND: Toll-like receptor (TLR) signaling has been found to be closely associated with tumor development. The aim of this study was to examine whether activation of TLRs promote migration and invasion of salivary gland adenocarcinoma. MATERIALS AND METHODS: TLR expression in SGT and HSG cells was examined by RT-PCR. Wound scratch and chemotaxis cell migration assay were performed. Invasiveness was determined by Matrigel invasion assay. RESULTS: All the tested TLRs including TLR1, TLR2, TLR4, and TLR5 and myeloid differentiation factor-2 (MD-2) were expressed on SGT and HSG cells. Treatment of flagellin, but not Pam(3) CSK(4) and LPS, led to the production of IL-6 and IL-8, suggesting TLR5 is functional in both cells. Stimulation by flagellin also accelerated wound closure of SGT and HSG cells in a dose-dependent manner. In addition, flagellin promoted migration and invasion ability of SGT cells. Blocking of TLR5 using antibody restored the promoting effect of flagellin on migration and invasion of SGT cells. CONCLUSION: These findings suggest that TLR5 activation by flagellin can promote migration and invasion of salivary gland adenocarcinoma.


Assuntos
Adenocarcinoma/fisiopatologia , Flagelina/farmacologia , Neoplasias das Glândulas Salivares/fisiopatologia , Receptor 5 Toll-Like/biossíntese , Receptor 5 Toll-Like/fisiologia , Linhagem Celular Tumoral , Ensaios de Migração Celular , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Colágeno/metabolismo , Combinação de Medicamentos , Humanos , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Laminina/metabolismo , Invasividade Neoplásica , Proteoglicanas/metabolismo , Receptor 5 Toll-Like/agonistas
19.
Int J Mol Med ; 27(2): 277-81, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21125213

RESUMO

Odontoblasts and/or dental pulp cells are responsible for tooth repair and dentin formation. Furthermore, adhesion and migration are critical processes for tissue regeneration. This study was performed to clarify whether lipopolysaccharide (LPS) modulates adhesion and migration of the murine odontoblast-like cell line MDPC-23, and whether Toll-like receptor 4 (TLR4) signaling is engaged in this process. TLR4 expression in MDPC-23 cells was examined by RT-PCR. Adhesion assay was performed using type I collagen-coated plates. Migration ability was determined by a commercial assay kit. Phosphorylation of IκB-α, FAK, AKT, and ERK was examined by Western blot analysis. TLR4 was functionally expressed in MDPC-23 cells. LPS treatment enhanced adhesion and migration of MDPC-23 cells in a dose-dependent manner. Blockade of TLR4 using its antibody restored LPS-induced adhesion and migration of MDPC-23 cells. These findings indicate that LPS, an immune activator from Gram-negative bacteria, can promote the adhesion and migration ability of MDPC-23 cells via TLR4.


Assuntos
Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Papila Dentária/citologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética
20.
J Oral Pathol Med ; 39(10): 781-5, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20456615

RESUMO

BACKGROUND: Toll-like receptors (TLRs) signaling has been found to promote cell proliferation, invasiveness, and angiogenesis in a variety of cancers. This study was performed to examine whether TLR signaling is involved in tumor progression of an oral squamous cell carcinoma, YD-10B cells. METHODS: TLRs expression was examined by reverse transcription-polymerase chain reaction (RT-PCR) in YD-10B cells. Interleukin (IL)-6 and IL-8 production by YD-10B cells in response to various TLR agonists was examined by ELISA. Cell viability and proliferation was determined by colorimetric MTT and Bromodeoxyuridine (BrdU) assay. The effect of TLR agonists on invasiveness was determined by migration and invasion assay using commercial kits. mRNA expression of vascular endothelial growth factor (VEGF) was also evaluated by RT-PCR. RESULTS: All tested TLRs including TLR2, 3, 4, 5, 7, and 9 were expressed in YD-10B cells. IL-6 and IL-8 production was increased by Pam(3) CSK(4) , flagellin, Poly I:C, and imiquimod, but not lipopolysaccharide (LPS). Porphyromonas gingivalis LPS (Pg LPS) also led to increase of IL-8 production. However, Pam(3) CSK(4,) flagellin, and Pg LPS did not affect cell proliferation, migration, invasion, and gene expression of VEGF in YD-10B cells. CONCLUSION: These findings indicated that TLR activation by bacterial molecules may not affect tumor progression of YD-10B cells.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Receptores Toll-Like/metabolismo , Proteínas de Bactérias/farmacologia , Carcinoma de Células Escamosas/genética , Movimento Celular/fisiologia , Proliferação de Células , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Neoplasias Bucais/genética , RNA Mensageiro/análise , Receptor 2 Toll-Like/efeitos dos fármacos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 5 Toll-Like/efeitos dos fármacos , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Receptores Toll-Like/classificação , Receptores Toll-Like/efeitos dos fármacos , Receptores Toll-Like/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...