Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909279

RESUMO

Isolated bovine adrenal chromaffin cells exposed to single 2-, 4-, or 5-ns pulses undergo a rapid, transient rise in intracellular Ca2+ mediated by Ca2+ entry via voltage-gated Ca2+ channels (VGCCs), mimicking the activation of these cells in vivo by acetylcholine. However, pulse durations 150 ns or longer elicit larger amplitude and longer-lived Ca2+ responses due to Ca2+ influx via both VGCCs and a yet to be identified plasma membrane pathway(s). To further our understanding of the differential effects of ultrashort versus longer pulse durations on Ca2+ influx, chromaffin cells were loaded with calcium green-1 and exposed to single 3-, 5-, 11-, 25-, or 50-ns pulses applied at their respective Ca2+ activation threshold electric fields. Increasing pulse duration from 3 or 5 ns to only 11 ns was sufficient to elicit increased amplitude and longer-lived Ca2+ responses in the majority of cells, a trend that continued as pulse duration increased to 50 ns. The amplification of Ca2+ responses was not the result of Ca2+ release from intracellular stores and was accompanied by a decreased effectiveness of VGCC inhibitors to block the responses and a reduced reliance on extracellular Na+ and membrane depolarization to evoke the responses. Inhibitors of pannexin channels, P2X receptors, or non-selective cation channels failed to attenuate 50-ns-elicited Ca2+ responses, ruling out these Ca2+-permeable channels as secondary Ca2+ entry pathways. Analytical calculations and numerical modeling suggest that the parameter that best determines the response of chromaffin cells to increasing pulse durations is the time the membrane charges to its peak voltage. These results highlight the pronounced sensitivity of a neuroendocrine cell to pulse durations differing by only tens of nanoseconds, which has important implications for the future development of nanosecond pulse technologies enabling electrostimulation applications for spatially focused and graded in vivo neuromodulation.

2.
Nat Commun ; 14(1): 4173, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443162

RESUMO

Deformable semi-solid liquid metal particles (LMP) have emerged as a promising substitute for rigid conductive fillers due to their excellent electrical properties and stable conductance under strain. However, achieving a compact and robust coating of LMP on fibers remains a persistent challenge, mainly due to the incompatibility of conventional coating techniques with LMP. Additionally, the limited durability and absence of initial electrical conductivity of LMP restrict their widespread application. In this study, we propose a solution process that robustly and compactly assembles mechanically durable and initially conductive LMP on fibers. Specifically, we present a shearing-based deposition of polymer-attached LMP followed by additional coating with CNT-attached LMP to create bi-layer LMP composite with exceptional durability, electrical conductivity, stretchability, and biocompatibility on various fibers. The versatility and reliability of this manufacturing strategy for 1D electronics are demonstrated through the development of sewn electrical circuits, smart clothes, stretchable biointerfaced fiber, and multifunctional fiber probes.


Assuntos
Dispositivos Eletrônicos Vestíveis , Têxteis , Reprodutibilidade dos Testes , Polímeros , Metais
3.
Sensors (Basel) ; 22(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36433568

RESUMO

This paper presents an optimization of reflectarray-based RF sensors for detecting UAV and human presence. Our previous human detection radar system adapted a center-fed reflectarray antenna to a commercially available radar system, successfully increasing the gains of the transmit (TX) and receive (RX) antennas by 21.18 dB and the range for detecting human targets 3.4 times. However, because the TX and RX antennas were placed in the focal point of the reflectarray, the TX signal reflected by the reflectarray was directly propagated into the RX antenna, causing desensitization or damage to the receiving circuit if high powers were used. To reduce this direct reflection, we propose a novel radar antenna configuration in which the TX and RX antennas are placed back-to-back with each other. In this configuration, the RX antenna does not directly face the reflectarray, thus direct path between the TX to RX through the reflectarray is removed. The results demonstrate that this approach achieves the optimum isolation level of 51.3 dB. With the reflectarray, the TX antenna gain increases to 30.6 dBi, but the RX antenna gain remains at 16 dBi since the RX antenna does not utilize the reflectarray. The TX and RX gain difference (14.6 dB) is a trade-off for good isolation and may be reduced by utilizing a high-gain receiver amplifier.


Assuntos
Amplificadores Eletrônicos , Radar , Humanos , Desenho de Equipamento , Corpo Humano
4.
Nano Lett ; 21(16): 6851-6858, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34383494

RESUMO

Triboelectrification is a phenomenon that generates electric potential upon contact. Here, we report a viral particle capable of generating triboelectric potential. M13 bacteriophage is exploited to fabricate precisely defined chemical and physical structures. By genetically engineering the charged structures, we observe that more negatively charged phages can generate higher triboelectric potentials and can diffuse the electric charges faster than less negatively charged phages can. The computational results show that the glutamate-engineered phages lower the LUMO energy level so that they can easily accept electrons from other materials upon contact. A phage-based triboelectric nanogenerator is fabricated and it could produce ∼76 V and ∼5.1 µA, enough to power 30 light-emitting diodes upon a mechanical force application. Our biotechnological approach will be useful to understand the electrical behavior of biomaterials, harvest mechanical energy, and provide a novel modality to detect desired viruses in the future.


Assuntos
Fontes de Energia Elétrica , Vírus , Eletricidade , Fenômenos Mecânicos , Nanotecnologia
5.
J Membr Biol ; 249(5): 633-644, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27075358

RESUMO

Patch clamp electrophysiology serves as a powerful method for studying changes in plasma membrane ion conductance induced by externally applied high-intensity nanosecond electric pulses (NEPs). This paper describes an enhanced monitoring technique that minimizes the length of time between pulse exposure and data recording in a patch-clamped excitable cell. Whole-cell membrane currents were continuously recorded up to 11 ms before and resumed 8 ms after delivery of a 5-ns, 6 MV/m pulse by a pair of tungsten rod electrodes to a patched adrenal chromaffin cell maintained at a holding potential of -70 mV. This timing was achieved by two sets of relay switches. One set was used to disconnect the patch pipette electrode from the pre-amplifier and connect it to a battery to maintain membrane potential at -70 mV, and also to disconnect the reference electrode from the amplifier. The other set was used to disconnect the electrodes from the pulse generator until the time of NEP/sham exposure. The sequence and timing of both sets of relays were computer-controlled. Using this procedure, we observed that a 5-ns pulse induced an instantaneous inward current that decayed exponentially over the course of several minutes, that a second pulse induced a similar response, and that the current was carried, at least in part, by Na+. This approach for characterizing ion conductance changes in an excitable cell in response to NEPs will yield information essential for assessing the potential use of NEP stimulation for therapeutic applications.


Assuntos
Fenômenos Eletrofisiológicos , Potenciais da Membrana , Técnicas de Patch-Clamp , Animais , Bovinos , Células Cromafins/fisiologia , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...