Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 272: 116057, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335574

RESUMO

A surge in the number of anthropogenic pollutants has been caused by increasing industrial activities. Nanoplastics are spotlighted as a new aquatic pollutant that are a threat to microbes and larger organisms. Our previous study showed that the subinhibitory concentrations of aquatic pollutants such as phenol and formalin act as signaling molecules and modulate global gene expression and metabolism. In this study, we aimed to investigate the impact of a new type of anthropogenic contaminant, polystyrene (PS) nanoplastics, on the expression of key virulence factors in zoonotic pathogen Edwardsiella piscicida and the assessment of potential changes in the susceptibility of zebrafish as a model host. The TEM data indicated a noticeable change in the cell membrane indicating that PS particles were possibly entering the bacterial cells. Transcriptome analyses performed to identify the differentially expressed genes upon PS exposure revealed that the genes involved in major virulence factor type VI secretion system (T6SS) were down-regulated. However, the expression of T6SS-related genes was recovered from the PS adapted E. piscicida when nanoplastics are free. This demonstrated the hypervirulence of pathogen in infection assays with both cell lines and in vivo zebrafish model. Therefore, this study provides experimental evidence elucidating the direct regulatory impact of nanoplastics influx into aquatic ecosystems on fish pathogenic bacteria, notably influencing the expression of virulence factors.


Assuntos
Edwardsiella , Poluentes Ambientais , Doenças dos Peixes , Animais , Virulência/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Microplásticos/toxicidade , Poliestirenos/toxicidade , Ecossistema , Fatores de Virulência/genética , Expressão Gênica , Proteínas de Bactérias/metabolismo
2.
Genes (Basel) ; 13(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35886026

RESUMO

Antibiotics have been widely used to inhibit microbial growth and to control bacterial infection; however, they can trigger an imbalance in the gut flora of the host and dysregulate the host gene regulatory system when discharged into the aquatic environment. We investigated the effects of chronic exposure to a low concentration of erythromycin and ampicillin, focusing on gut microbiome and global gene expression profiles from Korea native ricefish (Oryzias latipes). The proportion of Proteobacteria (especially the opportunistic pathogen Aeromonas veronii) was significantly increased in the ricefish under the chronic exposure to erythromycin and ampicillin, whereas that of other bacterial phyla (i.e., Fusobacteria) decreased. In addition, the expression of genes involved in immune responses such as chemokines and immunocyte chemotaxis was significantly influenced in ricefish in the aquatic environment with antibiotics present. These results show that the internal microbial flora and the host gene expression are susceptible even at a low concentration of chronic antibiotics in the environment, supporting the importance of the appropriate use of antibiotic dose to maintain the sustainable and healthy aquaculture industry and water ecosystem.


Assuntos
Microbioma Gastrointestinal , Oryzias , Ampicilina , Animais , Antibacterianos/farmacologia , Ecossistema , Eritromicina , Microbioma Gastrointestinal/genética , Transcriptoma/genética
3.
J Fish Dis ; 45(2): 249-259, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34843109

RESUMO

The control of bacterial pathogens, including Edwardsiella piscicida, in the aquaculture industry has high economic importance. This study aimed to identify a potential live vaccine candidate against E. piscicida infection to minimize the side effects and elicit immunity in the host. This study evaluated the virulence factors of E. piscicida CK108, with a special focus on the flagella. E. piscicida has two important homologous flagellin genes, namely flagellin-associated protein (fap) and flagellin domain-containing protein (fdp). CK226 (Δfap), CK247 (Δfdp) and CK248 (Δfap, fdp) mutant strains were constructed. Both CK226 and CK247 displayed decreased length and thickness of flagellar filaments, resulting in reduced bacterial swimming motility, while CK248 was non-motile as it lacked flagella. The loss of flagella and decreased motility was expected to decrease the pathogenicity of CK248. However, the median lethal dose (LD50 ) of CK248 against zebrafish was lower than those of the wild-type, CK226 and CK247 strains. The protective immunity and cytokine gene expression levels in the CK248-infected zebrafish were lower than those in the wild type-infected zebrafish. In conclusion, Fap and Fdp are essential for flagella formation and motility, and for stimulating fish immune response, which can be utilized as a potential adjuvants for E. piscicida vaccination.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Proteínas de Bactérias , Edwardsiella/genética , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/prevenção & controle , Flagelina/genética , Vacinas Atenuadas , Peixe-Zebra
4.
Microorganisms ; 8(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709101

RESUMO

Phenol and formalin are major water pollutants that are frequently discharged into the aquatic milieu. These chemicals can affect broad domains of life, including microorganisms. Aquatic pollutants, unlike terrestrial pollutants, are easily diluted in water environments and exist at a sub-inhibitory concentration (sub-IC), thus not directly inhibiting bacterial growth. However, they can modulate gene expression profiles. The sub-IC values of phenol and formalin were measured by minimal inhibitory concentration (MIC) assay to be 0.146% (1.3 mM) and 0.0039% (0.38 mM), respectively, in Edwardsiella piscicida CK108, a Gram-negative fish pathogen. We investigated the differentially expressed genes (DEG) by RNA-seq when the cells were exposed to the sub-ICs of phenol and formalin. DEG analyses revealed that genes involved in major virulence factors (type I fimbriae, flagella, type III and type VI secretion system) and various cellular pathways (energy production, amino acid synthesis, carbohydrate metabolism and two-component regulatory systems) were up- or downregulated by both chemicals. The genome-wide gene expression data corresponded to the results of a quantitative reverse complementary-PCR and motility assay. This study not only provides insight into how a representative fish pathogen, E. piscicida CK108, responds to the sub-ICs of phenol and formalin but also shows the importance of controlling chemical pollutants in aquatic environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...