Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015579

RESUMO

Polylactic acid (PLA) and polyglycolic acid (PGA) are well-known medical-implant materials. Under the consideration of the limitations of degradable polymeric materials, such as weak mechanical strength and by-product release through the biodegradation process under in vivo environments, PLA-PGA block copolymer is one of the effective alternative implant materials in the clinical field. In our previous study, two types of extremely effective PGA-PLA copolymers (multi/tri-block PGA-PLA copolymers) were synthesized. These synthesized block copolymers could overcome aforementioned issues and also showed good biocompatibility. In this study, the PGA-PLA block copolymers with large molecular weight were synthesized under the same chemical scheme, and their bio durability was confirmed through the in vivo degradation behavior and histochemical analyses (by hematoxylin and eosin and immune staining) in comparison with commercial PLGA random copolymer (medical grade). Specimens for the degradation test were investigated by SEM and X-ray diffractometer (XRD). As a result, the synthesized PGA-PLA block copolymer showed good biocompatibility and had a controlled biodegrading rate, making it suitable for use in resorbable spinal-fixation materials.

2.
Polymers (Basel) ; 13(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374878

RESUMO

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA-PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...